kyujinpy commited on
Commit
740c0bb
·
1 Parent(s): 249ae03

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -1,3 +1,68 @@
1
  ---
 
 
 
 
 
 
2
  license: cc-by-nc-sa-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ko
4
+ datasets:
5
+ - kyujinpy/KOR-OpenOrca-Platypus-v3
6
+ library_name: transformers
7
+ pipeline_tag: text-generation
8
  license: cc-by-nc-sa-4.0
9
  ---
10
+ **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
11
+ **The license is `cc-by-nc-sa-4.0`.**
12
+
13
+ # **🐳KOR-Orca-Platypus-13B🐳**
14
+ ![img](./Korean-OpenOrca.png)
15
+
16
+ ## Model Details
17
+
18
+ **Model Developers** Kyujin Han (kyujinpy)
19
+
20
+ **Input** Models input text only.
21
+
22
+ **Output** Models generate text only.
23
+
24
+ **Model Architecture**
25
+ Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
26
+
27
+ **Repo Link**
28
+ Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca)
29
+
30
+ **Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
31
+
32
+ **Training Dataset**
33
+ I use [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3).
34
+ (with NEFTune.)
35
+
36
+ I use A100 GPU 40GB and COLAB, when trianing.
37
+
38
+
39
+ # **Model Benchmark**
40
+
41
+ ## KO-LLM leaderboard
42
+ - Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard).
43
+
44
+ | Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
45
+ | --- | --- | --- | --- | --- | --- | --- |
46
+ | [KOR-Orca-Platypus-13B🐳] | 46.59 | 42.06 | 53.95 | 42.28 | 43.55 | 51.12 |
47
+ | **KOR-Orca-Platypus-13B🐳-v2** | 49.48 | 44.03 | 54.43 | 42.23 | 41.64 | 65.05 |
48
+ | KOR-Orca-Platypus-13B🐳-v3 | 48.37 | 43.77 | 54.27 | 42.66 | 38.58 | 62.57 |
49
+ > Compare with Top 4 SOTA models. (update: 10/09)
50
+
51
+
52
+ # Implementation Code
53
+ ```python
54
+ ### KO-Platypus
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+ import torch
57
+
58
+ repo = "kyujinpy/KOR-Orca-Platypus-13B-v3"
59
+ OpenOrca = AutoModelForCausalLM.from_pretrained(
60
+ repo,
61
+ return_dict=True,
62
+ torch_dtype=torch.float16,
63
+ device_map='auto'
64
+ )
65
+ OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
66
+ ```
67
+
68
+ ---