kyujinpy commited on
Commit
f6b4655
1 Parent(s): e82054b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md CHANGED
@@ -1,3 +1,56 @@
1
  ---
 
 
 
 
 
 
2
  license: cc-by-nc-sa-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ko
4
+ datasets:
5
+ - kyujinpy/OpenOrca-ko-v2
6
+ library_name: transformers
7
+ pipeline_tag: text-generation
8
  license: cc-by-nc-sa-4.0
9
  ---
10
+ **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
11
+ **The license is `cc-by-nc-sa-4.0`.**
12
+
13
+ # **🐳Korean-OpenOrca-13B-v2🐳**
14
+ ![img](./Korean-OpenOrca.png)
15
+
16
+ ## Model Details
17
+
18
+ **Model Developers** Kyujin Han (kyujinpy)
19
+
20
+ **Model Architecture**
21
+ Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
22
+
23
+ **Repo Link**
24
+ Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca)
25
+
26
+ **Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
27
+
28
+ **Training Dataset**
29
+ I use [OpenOrca-ko-v2](https://huggingface.co/datasets/kyujinpy/OpenOrca-ko-v2).
30
+ Using DeepL, translate about [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca).
31
+
32
+ I use A100 GPU 40GB and COLAB, when trianing.
33
+
34
+ # Model comparisons
35
+ | Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
36
+ | --- | --- | --- | --- | --- | --- | --- |
37
+ | [Korean-OpenOrca-13B🐳] | 48.79 | 43.09 | 54.13 | 40.24 | 45.22 | 61.28 |
38
+ | Korean-OpenOrca-13B-v2🐳 | 48.17 | 43.17 | 54.51 | 42.90 | 41.82 | 58.44 |
39
+
40
+ # Implementation Code
41
+ ```python
42
+ ### KO-Platypus
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+ import torch
45
+
46
+ repo = "kyujinpy/Korean-OpenOrca-13B-v2"
47
+ OpenOrca = AutoModelForCausalLM.from_pretrained(
48
+ repo,
49
+ return_dict=True,
50
+ torch_dtype=torch.float16,
51
+ device_map='auto'
52
+ )
53
+ OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
54
+ ```
55
+
56
+ ---