File size: 4,500 Bytes
950ea18 3099117 8556ec5 950ea18 75a8974 3099117 5213b74 b1e856a 950ea18 974343a 950ea18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: cc-by-4.0
language: hi
widget:
- source_sentence: "एक आदमी एक रस्सी पर चढ़ रहा है"
sentences:
- "एक आदमी एक रस्सी पर चढ़ता है"
- "एक आदमी एक दीवार पर चढ़ रहा है"
- "एक आदमी बांसुरी बजाता है"
example_title: "Example 1"
- source_sentence: "कुछ लोग गा रहे हैं"
sentences:
- "लोगों का एक समूह गाता है"
- "बिल्ली दूध पी रही है"
- "दो आदमी लड़ रहे हैं"
example_title: "Example 2"
- source_sentence: "फेडरर ने 7वां विंबलडन खिताब जीत लिया है"
sentences:
- "फेडरर अपने करियर में कुल 20 ग्रैंडस्लैम खिताब जीत चुके है "
- "फेडरर ने सितंबर में अपने निवृत्ति की घोषणा की"
- "एक आदमी कुछ खाना पकाने का तेल एक बर्तन में डालता है"
example_title: "Example 3"
---
# HindSBERT-STS
This is a HindSBERT model (l3cube-pune/hindi-sentence-bert-nli) fine-tuned on the STS dataset. <br>
Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP <br>
A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here <a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> indic-sentence-similarity-sbert </a> <br>
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
```
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
```
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
|