l3cube-pune commited on
Commit
b86d5db
1 Parent(s): 38e1081

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -57
README.md CHANGED
@@ -7,6 +7,16 @@ tags:
7
  - transformers
8
  language:
9
  - multilingual
 
 
 
 
 
 
 
 
 
 
10
  widget:
11
  - source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
12
  sentences:
@@ -41,12 +51,23 @@ widget:
41
  example_title: "Cross-lingual 2"
42
  ---
43
 
44
- # {MODEL_NAME}
45
 
46
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
 
 
47
 
48
- <!--- Describe your model here -->
49
 
 
 
 
 
 
 
 
 
50
  ## Usage (Sentence-Transformers)
51
 
52
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
@@ -103,57 +124,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
103
  print("Sentence embeddings:")
104
  print(sentence_embeddings)
105
  ```
106
-
107
-
108
-
109
- ## Evaluation Results
110
-
111
- <!--- Describe how your model was evaluated -->
112
-
113
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
114
-
115
-
116
- ## Training
117
- The model was trained with the parameters:
118
-
119
- **DataLoader**:
120
-
121
- `torch.utils.data.dataloader.DataLoader` of length 7187 with parameters:
122
- ```
123
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
124
- ```
125
-
126
- **Loss**:
127
-
128
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
129
-
130
- Parameters of the fit()-Method:
131
- ```
132
- {
133
- "epochs": 4,
134
- "evaluation_steps": 0,
135
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
136
- "max_grad_norm": 1,
137
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
138
- "optimizer_params": {
139
- "lr": 2e-05
140
- },
141
- "scheduler": "WarmupLinear",
142
- "steps_per_epoch": null,
143
- "warmup_steps": 2874,
144
- "weight_decay": 0.01
145
- }
146
- ```
147
-
148
-
149
- ## Full Model Architecture
150
- ```
151
- SentenceTransformer(
152
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
153
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
154
- )
155
- ```
156
-
157
- ## Citing & Authors
158
-
159
- <!--- Describe where people can find more information -->
 
7
  - transformers
8
  language:
9
  - multilingual
10
+ - hi
11
+ - mr
12
+ - kn
13
+ - ta
14
+ - te
15
+ - ml
16
+ - gu
17
+ - or
18
+ - pa
19
+ - bn
20
  widget:
21
  - source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
22
  sentences:
 
51
  example_title: "Cross-lingual 2"
52
  ---
53
 
54
+ # IndicSBERT-STS
55
 
56
+ This is a IndicSBERT model (l3cube-pune/indic-sentence-bert-nli) trained on the STS dataset of ten major Indian Languages. <br>
57
+ The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
58
+ The model also has cross-lingual capabilities. <br>
59
+ Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
60
 
61
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
62
 
63
+ ```
64
+ @article{joshi2022l3cubemahasbert,
65
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
66
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
67
+ journal={arXiv preprint arXiv:2211.11187},
68
+ year={2022}
69
+ }
70
+ ```
71
  ## Usage (Sentence-Transformers)
72
 
73
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
124
  print("Sentence embeddings:")
125
  print(sentence_embeddings)
126
  ```