l3cube-pune
commited on
Commit
•
b86d5db
1
Parent(s):
38e1081
Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,16 @@ tags:
|
|
7 |
- transformers
|
8 |
language:
|
9 |
- multilingual
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
widget:
|
11 |
- source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
|
12 |
sentences:
|
@@ -41,12 +51,23 @@ widget:
|
|
41 |
example_title: "Cross-lingual 2"
|
42 |
---
|
43 |
|
44 |
-
#
|
45 |
|
46 |
-
This is a
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
## Usage (Sentence-Transformers)
|
51 |
|
52 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -103,57 +124,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
103 |
print("Sentence embeddings:")
|
104 |
print(sentence_embeddings)
|
105 |
```
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
## Evaluation Results
|
110 |
-
|
111 |
-
<!--- Describe how your model was evaluated -->
|
112 |
-
|
113 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
114 |
-
|
115 |
-
|
116 |
-
## Training
|
117 |
-
The model was trained with the parameters:
|
118 |
-
|
119 |
-
**DataLoader**:
|
120 |
-
|
121 |
-
`torch.utils.data.dataloader.DataLoader` of length 7187 with parameters:
|
122 |
-
```
|
123 |
-
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
124 |
-
```
|
125 |
-
|
126 |
-
**Loss**:
|
127 |
-
|
128 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
129 |
-
|
130 |
-
Parameters of the fit()-Method:
|
131 |
-
```
|
132 |
-
{
|
133 |
-
"epochs": 4,
|
134 |
-
"evaluation_steps": 0,
|
135 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
136 |
-
"max_grad_norm": 1,
|
137 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
138 |
-
"optimizer_params": {
|
139 |
-
"lr": 2e-05
|
140 |
-
},
|
141 |
-
"scheduler": "WarmupLinear",
|
142 |
-
"steps_per_epoch": null,
|
143 |
-
"warmup_steps": 2874,
|
144 |
-
"weight_decay": 0.01
|
145 |
-
}
|
146 |
-
```
|
147 |
-
|
148 |
-
|
149 |
-
## Full Model Architecture
|
150 |
-
```
|
151 |
-
SentenceTransformer(
|
152 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
153 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
154 |
-
)
|
155 |
-
```
|
156 |
-
|
157 |
-
## Citing & Authors
|
158 |
-
|
159 |
-
<!--- Describe where people can find more information -->
|
|
|
7 |
- transformers
|
8 |
language:
|
9 |
- multilingual
|
10 |
+
- hi
|
11 |
+
- mr
|
12 |
+
- kn
|
13 |
+
- ta
|
14 |
+
- te
|
15 |
+
- ml
|
16 |
+
- gu
|
17 |
+
- or
|
18 |
+
- pa
|
19 |
+
- bn
|
20 |
widget:
|
21 |
- source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
|
22 |
sentences:
|
|
|
51 |
example_title: "Cross-lingual 2"
|
52 |
---
|
53 |
|
54 |
+
# IndicSBERT-STS
|
55 |
|
56 |
+
This is a IndicSBERT model (l3cube-pune/indic-sentence-bert-nli) trained on the STS dataset of ten major Indian Languages. <br>
|
57 |
+
The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
|
58 |
+
The model also has cross-lingual capabilities. <br>
|
59 |
+
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
|
60 |
|
61 |
+
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
|
62 |
|
63 |
+
```
|
64 |
+
@article{joshi2022l3cubemahasbert,
|
65 |
+
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
|
66 |
+
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
|
67 |
+
journal={arXiv preprint arXiv:2211.11187},
|
68 |
+
year={2022}
|
69 |
+
}
|
70 |
+
```
|
71 |
## Usage (Sentence-Transformers)
|
72 |
|
73 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
124 |
print("Sentence embeddings:")
|
125 |
print(sentence_embeddings)
|
126 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|