File size: 2,456 Bytes
5670862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language:
- en
thumbnail: "https://s3.amazonaws.com/moonup/production/uploads/1663756797814-62bd5f951e22ec84279820e8.png"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
datasets:
- lambdalabs/pokemon-blip-captions
---
__Stable Diffusion fine tuned on Pokémon by [Lambda Labs](https://lambdalabs.com/).__
Put in a text prompt and generate your own Pokémon character, no "prompt engineering" required!
If you want to find out how to train your own Stable Diffusion variants, see this [example](https://github.com/LambdaLabsML/examples/tree/main/stable-diffusion-finetuning) from Lambda Labs.
![image.png](https://s3.amazonaws.com/moonup/production/uploads/1663756797814-62bd5f951e22ec84279820e8.png)
> Girl with a pearl earring, Cute Obama creature, Donald Trump, Boris Johnson, Totoro, Hello Kitty
## Usage
```bash
!pip install diffusers==0.3.0
!pip install transformers scipy ftfy
```
```python
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast
pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/sd-pokemon-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Yoda"
scale = 10
n_samples = 4
# Sometimes the nsfw checker is confused by the Pokémon images, you can disable
# it at your own risk here
disable_safety = False
if disable_safety:
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
with autocast("cuda"):
images = pipe(n_samples*[prompt], guidance_scale=scale).images
for idx, im in enumerate(images):
im.save(f"{idx:06}.png")
```
## Model description
Trained on [BLIP captioned Pokémon images](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) using 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for around 15,000 step (about 6 hours, at a cost of about $10).
## Links
- [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers)
- [Captioned Pokémon dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions)
- [Model weights in Diffusers format](https://huggingface.co/lambdalabs/sd-pokemon-diffusers)
- [Original model weights](https://huggingface.co/justinpinkney/pokemon-stable-diffusion)
- [Training code](https://github.com/justinpinkney/stable-diffusion)
Trained by [Justin Pinkney](justinpinkney.com) ([@Buntworthy](https://twitter.com/Buntworthy)) at [Lambda Labs](https://lambdalabs.com/). |