--- license: apache-2.0 datasets: - lambdasec/cve-single-line-fixes - lambdasec/gh-top-1000-projects-vulns language: - code tags: - code programming_language: - Java - JavaScript - Python inference: false model-index: - name: SantaFixer results: - task: type: text-generation dataset: type: lambdasec/gh-top-1000-projects-vulns name: GH Top 1000 Projects Vulnerabilities metrics: - name: pass@10 (Java) type: pass@10 value: 0.1 verified: false - name: pass@10 (Python) type: pass@10 value: 0.2 verified: false - name: pass@10 (JavaScript) type: pass@10 value: 0.3 verified: false --- # Model Card for SantaFixer This is a LLM for code that is focussed on generating bug fixes using infilling. ## Model Details ### Model Description - **Developed by:** [codelion](https://huggingface.co/codelion) - **Model type:** GPT-2 - **Finetuned from model:** [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]