Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,104 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- biology
|
5 |
+
- chemistry
|
6 |
+
- biological materials
|
7 |
+
- materials science
|
8 |
+
- engineering
|
9 |
+
- materials informatics
|
10 |
+
- scientific AI
|
11 |
+
- AI4science
|
12 |
+
- Llama-3-1
|
13 |
---
|
14 |
|
15 |
+
## Inference example
|
16 |
+
|
17 |
+
```
|
18 |
+
model_name='lamm-mit/Bioinspired-Llama-3-1-8B-128k-gamma'
|
19 |
+
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_name,
|
22 |
+
trust_remote_code=True,
|
23 |
+
device_map="auto",
|
24 |
+
torch_dtype =torch.bfloat16,
|
25 |
+
attn_implementation="flash_attention_2"
|
26 |
+
)
|
27 |
+
model.config.use_cache = True
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
|
30 |
+
```
|
31 |
+
|
32 |
+
#### Function to interact with the model
|
33 |
+
|
34 |
+
```
|
35 |
+
def generate_response (text_input="What is spider silk?",
|
36 |
+
system_prompt='',
|
37 |
+
num_return_sequences=1,
|
38 |
+
temperature=1., #the higher the temperature, the more creative the model becomes
|
39 |
+
max_new_tokens=127,device='cuda',
|
40 |
+
add_special_tokens = False, #since tokenizer.apply_chat_template adds <|begin_of_text|> template already, set to False
|
41 |
+
num_beams=1,eos_token_id= [
|
42 |
+
128001,
|
43 |
+
128008,
|
44 |
+
128009
|
45 |
+
], verbatim=False,
|
46 |
+
top_k = 50,
|
47 |
+
top_p = 0.9,
|
48 |
+
repetition_penalty=1.1,
|
49 |
+
messages=[],
|
50 |
+
):
|
51 |
+
|
52 |
+
if messages==[]: #start new messages dictionary
|
53 |
+
if system_prompt != '': #include system prompt if provided
|
54 |
+
messages.extend ([ {"role": "system", "content": system_prompt}, ])
|
55 |
+
messages.extend ( [ {"role": "user", "content": text_input}, ])
|
56 |
+
|
57 |
+
else: #if messages provided, will extend (make sure to add previous response as assistant message)
|
58 |
+
messages.append ({"role": "user", "content": text_input})
|
59 |
+
|
60 |
+
text_input = tokenizer.apply_chat_template(
|
61 |
+
messages,
|
62 |
+
tokenize=False,
|
63 |
+
add_generation_prompt=True
|
64 |
+
)
|
65 |
+
inputs = tokenizer([text_input], add_special_tokens = add_special_tokens, return_tensors ='pt' ).to(device)
|
66 |
+
if verbatim:
|
67 |
+
print (inputs)
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model.generate(**inputs,
|
70 |
+
max_new_tokens=max_new_tokens,
|
71 |
+
temperature=temperature,
|
72 |
+
num_beams=num_beams,
|
73 |
+
top_k = top_k,eos_token_id=eos_token_id,
|
74 |
+
top_p =top_p,
|
75 |
+
num_return_sequences = num_return_sequences,
|
76 |
+
do_sample =True, repetition_penalty=repetition_penalty,
|
77 |
+
)
|
78 |
+
outputs=outputs[:, inputs["input_ids"].shape[1]:]
|
79 |
+
return tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True), messages
|
80 |
+
```
|
81 |
+
Usage:
|
82 |
+
```
|
83 |
+
res,_= generate_response (text_input = "What is collagen?", system_prompt = 'You are a materials scientist.',
|
84 |
+
num_return_sequences=1,
|
85 |
+
temperature=1., #the higher the temperature, the more creative the model becomes
|
86 |
+
max_new_tokens=127,
|
87 |
+
num_beams=1,
|
88 |
+
top_k = 50, top_p =0.9, repetition_penalty=1.1,
|
89 |
+
|
90 |
+
)
|
91 |
+
print (res[0])
|
92 |
+
```
|
93 |
+
To realize multi-turn interactions, see this example:
|
94 |
+
```
|
95 |
+
res, messages = generate_response (text_input="What is spider silk?", messages=[])
|
96 |
+
messages.append ({"role": "assistant", "content": res[0]}, ) #append result to messages dict
|
97 |
+
print (res)
|
98 |
+
res, messages = generate_response (text_input="Explain this result in detail.", messages=messages)
|
99 |
+
messages.append ({"role": "assistant", "content": res[0]}, ) #append result to messages dict
|
100 |
+
print (res)
|
101 |
+
res, messages = generate_response (text_input="Provide this in JSON format.", messages=messages)
|
102 |
+
messages.append ({"role": "assistant", "content": res[0]}) #append result to messages dict
|
103 |
+
print (res)
|
104 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|