mjbuehler commited on
Commit
32c1aa8
1 Parent(s): 3691ac2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -195
README.md CHANGED
@@ -1,199 +1,104 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - biology
5
+ - chemistry
6
+ - biological materials
7
+ - materials science
8
+ - engineering
9
+ - materials informatics
10
+ - scientific AI
11
+ - AI4science
12
+ - Llama-3-1
13
  ---
14
 
15
+ ## Inference example
16
+
17
+ ```
18
+ model_name='lamm-mit/Bioinspired-Llama-3-1-8B-128k-gamma'
19
+
20
+ model = AutoModelForCausalLM.from_pretrained(
21
+ model_name,
22
+ trust_remote_code=True,
23
+ device_map="auto",
24
+ torch_dtype =torch.bfloat16,
25
+ attn_implementation="flash_attention_2"
26
+ )
27
+ model.config.use_cache = True
28
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
29
+
30
+ ```
31
+
32
+ #### Function to interact with the model
33
+
34
+ ```
35
+ def generate_response (text_input="What is spider silk?",
36
+ system_prompt='',
37
+ num_return_sequences=1,
38
+ temperature=1., #the higher the temperature, the more creative the model becomes
39
+ max_new_tokens=127,device='cuda',
40
+ add_special_tokens = False, #since tokenizer.apply_chat_template adds <|begin_of_text|> template already, set to False
41
+ num_beams=1,eos_token_id= [
42
+ 128001,
43
+ 128008,
44
+ 128009
45
+ ], verbatim=False,
46
+ top_k = 50,
47
+ top_p = 0.9,
48
+ repetition_penalty=1.1,
49
+ messages=[],
50
+ ):
51
+
52
+ if messages==[]: #start new messages dictionary
53
+ if system_prompt != '': #include system prompt if provided
54
+ messages.extend ([ {"role": "system", "content": system_prompt}, ])
55
+ messages.extend ( [ {"role": "user", "content": text_input}, ])
56
+
57
+ else: #if messages provided, will extend (make sure to add previous response as assistant message)
58
+ messages.append ({"role": "user", "content": text_input})
59
+
60
+ text_input = tokenizer.apply_chat_template(
61
+ messages,
62
+ tokenize=False,
63
+ add_generation_prompt=True
64
+ )
65
+ inputs = tokenizer([text_input], add_special_tokens = add_special_tokens, return_tensors ='pt' ).to(device)
66
+ if verbatim:
67
+ print (inputs)
68
+ with torch.no_grad():
69
+ outputs = model.generate(**inputs,
70
+ max_new_tokens=max_new_tokens,
71
+ temperature=temperature,
72
+ num_beams=num_beams,
73
+ top_k = top_k,eos_token_id=eos_token_id,
74
+ top_p =top_p,
75
+ num_return_sequences = num_return_sequences,
76
+ do_sample =True, repetition_penalty=repetition_penalty,
77
+ )
78
+ outputs=outputs[:, inputs["input_ids"].shape[1]:]
79
+ return tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True), messages
80
+ ```
81
+ Usage:
82
+ ```
83
+ res,_= generate_response (text_input = "What is collagen?", system_prompt = 'You are a materials scientist.',
84
+ num_return_sequences=1,
85
+ temperature=1., #the higher the temperature, the more creative the model becomes
86
+ max_new_tokens=127,
87
+ num_beams=1,
88
+ top_k = 50, top_p =0.9, repetition_penalty=1.1,
89
+
90
+ )
91
+ print (res[0])
92
+ ```
93
+ To realize multi-turn interactions, see this example:
94
+ ```
95
+ res, messages = generate_response (text_input="What is spider silk?", messages=[])
96
+ messages.append ({"role": "assistant", "content": res[0]}, ) #append result to messages dict
97
+ print (res)
98
+ res, messages = generate_response (text_input="Explain this result in detail.", messages=messages)
99
+ messages.append ({"role": "assistant", "content": res[0]}, ) #append result to messages dict
100
+ print (res)
101
+ res, messages = generate_response (text_input="Provide this in JSON format.", messages=messages)
102
+ messages.append ({"role": "assistant", "content": res[0]}) #append result to messages dict
103
+ print (res)
104
+ ```