File size: 8,325 Bytes
ae681c2
c64f42e
 
 
ae681c2
 
c64f42e
 
 
 
 
 
 
ae681c2
 
c64f42e
 
 
 
 
 
 
 
 
 
6b87d5d
c64f42e
6b87d5d
c64f42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73a00e6
c64f42e
 
 
 
c9975f7
c64f42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aea13e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960f702
8aea13e
 
960f702
8aea13e
960f702
 
 
8aea13e
 
960f702
8aea13e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f828bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64f42e
 
2ff3c3a
c64f42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
770b653
 
 
 
 
 
 
 
 
 
 
 
c64f42e
 
 
 
 
 
 
 
 
 
 
ae681c2
c64f42e
ae681c2
 
24dbe85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- stable-diffusion-2
- stable-diffusion-2-diffusers
instance_prompt: <leaf microstructure>
widget: []
---

# Stable Diffusion 2.x Fine-tuned with Leaf Images

## Model description

These are fine-tuned weights for the ```stabilityai/stable-diffusion-2``` model. This is a full fine-tune of the model using DreamBooth. 

## Trigger keywords

The following image were used during fine-tuning using the keyword \<leaf microstructure\>:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/468VnOa9vOCoHRcY4fMYK.png)

You should use \<leaf microstructure\> to trigger the image generation.

## How to use

Defining some helper functions:

```python
from diffusers import DiffusionPipeline
import torch
import os
from datetime import datetime
from PIL import Image

def generate_filename(base_name, extension=".png"):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return f"{base_name}_{timestamp}{extension}"

def save_image(image, directory, base_name="image_grid"):
    
    filename = generate_filename(base_name)
    file_path = os.path.join(directory, filename)
    image.save(file_path)
    print(f"Image saved as {file_path}")

def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
              save_individual_files=False):
    
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
        
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
        if save_individual_files:
            save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
            
    if save and save_dir:
        save_image(grid, save_dir, base_name)
    
    return grid
```

### Text-to-image

Model loading:

```python

import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

repo_id='lamm-mit/SD2x-leaf-inspired'

pipe = StableDiffusionPipeline.from_pretrained(repo_id,
        scheduler = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler"),
        torch_dtype=torch.float16,
    ).to("cuda")

```

Image generation:

```python
prompt      = "a vase that resembles a <leaf microstructure>, high quality" 
num_samples = 4  
num_rows    = 4

all_images = []
for _ in range(num_rows):
    images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
    all_images.extend(images)

grid = image_grid(all_images, num_rows, num_samples)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/SI5aYv2dygJn0Y12LIqqe.png)

### Image-to-Image

The model can be used also for image-to-image tasks. For instance, we can first generate a draft image and then further modify it. 

Create draft image:
```
prompt      = "a vase that resembles a <leaf microstructure>, high quality" 
num_samples = 4  
num_rows    = 1

all_images = []
for _ in range(num_rows):
    images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
    all_images.extend(images)

grid = image_grid(all_images, num_rows, num_samples, save_individual_files=True)
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/MkOXQIpdhl_zWM3QySYMY.png)

Now we use one of the images (second from left) and modify it using the image-to-image pipeline. You can get the image as follows (if you run the generate code yourself, the generated images will be in the subdirectory ```generated_images```):

```
wget https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/image_grid_1-of-4__20240722_144702.png
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/l4WCC3PoZ6OpiSN-E66i3.png)

Now, generate:
```
fname='image_grid_1-of-4__20240722_144702.png'
init_image = Image.open(fname).convert("RGB")
init_image = init_image.resize((768, 768))

prompt      = "A vase made out of a spongy material, high quality photograph, full frame."
num_samples = 4
num_rows    = 1

all_images = []
for _ in range(num_rows):
    images = img2imgpipe(prompt, image=init_image, 
                         num_images_per_prompt=num_samples, strength=0.8, num_inference_steps=75, guidance_scale=25).images
    all_images.extend(images)

grid = image_grid(images, num_rows, num_samples, save_individual_files=True)
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/0ROO1Ob2Z-GYPepYyyAGg.png)


We can further edit the image:


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/c-1b4J-as6b2p9ZQSSLjK.png)
```
fname='image_grid_2-of-4__20240722_150458.png'
init_image = Image.open(fname).convert("RGB")
init_image = init_image.resize((768, 768))

prompt      = "A nicely connected white spider web."
num_samples = 4
num_rows    = 1

all_images = []
for _ in range(num_rows):
    images = img2imgpipe(prompt, image=init_image, 
                         num_images_per_prompt=num_samples, strength=0.8, num_inference_steps=10, guidance_scale=20).images
    all_images.extend(images)

grid = image_grid(images, num_rows, num_samples, save_individual_files=True)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/izv21tOqJntVAwes0TEzu.png)

A detailed view of one of them:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ik7RkGzrx0N8gkNfkei3j.png)

## Fine-tuning script 

Download this script: [SD2x DreamBooth-Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/SD2x_DreamBooth_Fine-Tune.ipynb)

You need to create a local folder ```leaf_concept_dir``` and add the leaf images (provided in this repository, see subfolder), like so:

```python
save_path='leaf_concept_dir'
urls = [
      "https://www.dropbox.com/scl/fi/4s09djm4nqxmq6vhvv9si/13_.jpg?rlkey=3m2f90pjofljmlqg5uc722i6y&dl=1",
      "https://www.dropbox.com/scl/fi/w4jsrf0qmrcro37nxutbx/25_.jpg?rlkey=e52gnoqaar33kwrd01h1mwcnk&dl=1",
      "https://www.dropbox.com/scl/fi/x0xgavduor4cbxz0sdcd2/33_.jpg?rlkey=5htaicapahhn66wnsr23v1nxz&dl=1",
      "https://www.dropbox.com/scl/fi/2grt40acypah9h9ok607q/72_.jpg?rlkey=bl6vfv0rcas2ygsz6o3behlst&dl=1",
      "https://www.dropbox.com/scl/fi/ecaf9agzdj2cawspmyt5i/117_.jpg?rlkey=oqxyk9i1wtu1wtkqadd6ylyjj&dl=1",
      "https://www.dropbox.com/scl/fi/gw3p73r99fleozr6ckfa3/126_.jpg?rlkey=6n7kqaklczshht1ntyqunh2lt&dl=1",
      ## You can add additional images here
      ]
images = list(filter(None,[download_image(url) for url in urls]))

if not os.path.exists(save_path):
  os.mkdir(save_path)
    
[image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)]
image_grid(images, 1, len(images))
```

The training script is included in the Jupyter notebook.  

## More examples

```python
prompt      = "a conch shell on black background that resembles a <leaf microstructure>, high quality" 
num_samples = 4  
num_rows    = 4
all_images = []
for _ in range(num_rows):
    images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
    all_images.extend(images)
grid = image_grid(all_images, num_rows, num_samples)
grid
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/eE1xBqyVA4sP4gx6tAEGc.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ga808aW5H27f0hPq_RNme.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/r0dUyA-Gh_biy5d-4lTl0.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/iEjozBWOQQwxNVuKWZ7TT.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/ESvd6cCkyJZ52Cu3iYfoP.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/2FExqoj8TSjJoIiw4wCm6.png)