File size: 8,325 Bytes
ae681c2 c64f42e ae681c2 c64f42e ae681c2 c64f42e 6b87d5d c64f42e 6b87d5d c64f42e 73a00e6 c64f42e c9975f7 c64f42e 8aea13e 960f702 8aea13e 960f702 8aea13e 960f702 8aea13e 960f702 8aea13e f828bdc c64f42e 2ff3c3a c64f42e 770b653 c64f42e ae681c2 c64f42e ae681c2 24dbe85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- stable-diffusion-2
- stable-diffusion-2-diffusers
instance_prompt: <leaf microstructure>
widget: []
---
# Stable Diffusion 2.x Fine-tuned with Leaf Images
## Model description
These are fine-tuned weights for the ```stabilityai/stable-diffusion-2``` model. This is a full fine-tune of the model using DreamBooth.
## Trigger keywords
The following image were used during fine-tuning using the keyword \<leaf microstructure\>:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/468VnOa9vOCoHRcY4fMYK.png)
You should use \<leaf microstructure\> to trigger the image generation.
## How to use
Defining some helper functions:
```python
from diffusers import DiffusionPipeline
import torch
import os
from datetime import datetime
from PIL import Image
def generate_filename(base_name, extension=".png"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
return f"{base_name}_{timestamp}{extension}"
def save_image(image, directory, base_name="image_grid"):
filename = generate_filename(base_name)
file_path = os.path.join(directory, filename)
image.save(file_path)
print(f"Image saved as {file_path}")
def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
save_individual_files=False):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
if save_individual_files:
save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
if save and save_dir:
save_image(grid, save_dir, base_name)
return grid
```
### Text-to-image
Model loading:
```python
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
repo_id='lamm-mit/SD2x-leaf-inspired'
pipe = StableDiffusionPipeline.from_pretrained(repo_id,
scheduler = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler"),
torch_dtype=torch.float16,
).to("cuda")
```
Image generation:
```python
prompt = "a vase that resembles a <leaf microstructure>, high quality"
num_samples = 4
num_rows = 4
all_images = []
for _ in range(num_rows):
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
all_images.extend(images)
grid = image_grid(all_images, num_rows, num_samples)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/SI5aYv2dygJn0Y12LIqqe.png)
### Image-to-Image
The model can be used also for image-to-image tasks. For instance, we can first generate a draft image and then further modify it.
Create draft image:
```
prompt = "a vase that resembles a <leaf microstructure>, high quality"
num_samples = 4
num_rows = 1
all_images = []
for _ in range(num_rows):
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
all_images.extend(images)
grid = image_grid(all_images, num_rows, num_samples, save_individual_files=True)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/MkOXQIpdhl_zWM3QySYMY.png)
Now we use one of the images (second from left) and modify it using the image-to-image pipeline. You can get the image as follows (if you run the generate code yourself, the generated images will be in the subdirectory ```generated_images```):
```
wget https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/image_grid_1-of-4__20240722_144702.png
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/l4WCC3PoZ6OpiSN-E66i3.png)
Now, generate:
```
fname='image_grid_1-of-4__20240722_144702.png'
init_image = Image.open(fname).convert("RGB")
init_image = init_image.resize((768, 768))
prompt = "A vase made out of a spongy material, high quality photograph, full frame."
num_samples = 4
num_rows = 1
all_images = []
for _ in range(num_rows):
images = img2imgpipe(prompt, image=init_image,
num_images_per_prompt=num_samples, strength=0.8, num_inference_steps=75, guidance_scale=25).images
all_images.extend(images)
grid = image_grid(images, num_rows, num_samples, save_individual_files=True)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/0ROO1Ob2Z-GYPepYyyAGg.png)
We can further edit the image:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/c-1b4J-as6b2p9ZQSSLjK.png)
```
fname='image_grid_2-of-4__20240722_150458.png'
init_image = Image.open(fname).convert("RGB")
init_image = init_image.resize((768, 768))
prompt = "A nicely connected white spider web."
num_samples = 4
num_rows = 1
all_images = []
for _ in range(num_rows):
images = img2imgpipe(prompt, image=init_image,
num_images_per_prompt=num_samples, strength=0.8, num_inference_steps=10, guidance_scale=20).images
all_images.extend(images)
grid = image_grid(images, num_rows, num_samples, save_individual_files=True)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/izv21tOqJntVAwes0TEzu.png)
A detailed view of one of them:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ik7RkGzrx0N8gkNfkei3j.png)
## Fine-tuning script
Download this script: [SD2x DreamBooth-Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/SD2x_DreamBooth_Fine-Tune.ipynb)
You need to create a local folder ```leaf_concept_dir``` and add the leaf images (provided in this repository, see subfolder), like so:
```python
save_path='leaf_concept_dir'
urls = [
"https://www.dropbox.com/scl/fi/4s09djm4nqxmq6vhvv9si/13_.jpg?rlkey=3m2f90pjofljmlqg5uc722i6y&dl=1",
"https://www.dropbox.com/scl/fi/w4jsrf0qmrcro37nxutbx/25_.jpg?rlkey=e52gnoqaar33kwrd01h1mwcnk&dl=1",
"https://www.dropbox.com/scl/fi/x0xgavduor4cbxz0sdcd2/33_.jpg?rlkey=5htaicapahhn66wnsr23v1nxz&dl=1",
"https://www.dropbox.com/scl/fi/2grt40acypah9h9ok607q/72_.jpg?rlkey=bl6vfv0rcas2ygsz6o3behlst&dl=1",
"https://www.dropbox.com/scl/fi/ecaf9agzdj2cawspmyt5i/117_.jpg?rlkey=oqxyk9i1wtu1wtkqadd6ylyjj&dl=1",
"https://www.dropbox.com/scl/fi/gw3p73r99fleozr6ckfa3/126_.jpg?rlkey=6n7kqaklczshht1ntyqunh2lt&dl=1",
## You can add additional images here
]
images = list(filter(None,[download_image(url) for url in urls]))
if not os.path.exists(save_path):
os.mkdir(save_path)
[image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)]
image_grid(images, 1, len(images))
```
The training script is included in the Jupyter notebook.
## More examples
```python
prompt = "a conch shell on black background that resembles a <leaf microstructure>, high quality"
num_samples = 4
num_rows = 4
all_images = []
for _ in range(num_rows):
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images
all_images.extend(images)
grid = image_grid(all_images, num_rows, num_samples)
grid
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/eE1xBqyVA4sP4gx6tAEGc.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ga808aW5H27f0hPq_RNme.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/r0dUyA-Gh_biy5d-4lTl0.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/iEjozBWOQQwxNVuKWZ7TT.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/ESvd6cCkyJZ52Cu3iYfoP.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/2FExqoj8TSjJoIiw4wCm6.png)
|