laszlokiss27
commited on
Commit
•
813a325
1
Parent(s):
987dfc2
doodle-zero
Browse files- README.md +22 -82
- all_results.json +11 -11
- config.json +126 -119
- model.safetensors +2 -2
- preprocessor_config.json +3 -3
- test_results.json +6 -6
- train_results.json +6 -6
- trainer_state.json +0 -0
- training_args.bin +2 -2
README.md
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
---
|
2 |
-
license: other
|
3 |
-
base_model: apple/mobilevitv2-1.0-imagenet1k-256
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -15,10 +13,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# results
|
17 |
|
18 |
-
This model is a fine-tuned version of [
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -49,83 +47,25 @@ The following hyperparameters were used during training:
|
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
-
| Training Loss | Epoch | Step
|
53 |
-
|
54 |
-
| 1.
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
| 0.8986 | 0.4810 | 90000 | 0.8959 | 0.7689 |
|
72 |
-
| 0.8965 | 0.5077 | 95000 | 0.8851 | 0.7720 |
|
73 |
-
| 0.8906 | 0.5344 | 100000 | 0.8870 | 0.7715 |
|
74 |
-
| 0.8888 | 0.5611 | 105000 | 0.8867 | 0.7716 |
|
75 |
-
| 0.8852 | 0.5878 | 110000 | 0.8793 | 0.7732 |
|
76 |
-
| 0.8822 | 0.6145 | 115000 | 0.8773 | 0.7735 |
|
77 |
-
| 0.8796 | 0.6413 | 120000 | 0.8713 | 0.7747 |
|
78 |
-
| 0.8707 | 0.6680 | 125000 | 0.8662 | 0.7763 |
|
79 |
-
| 0.8735 | 0.6947 | 130000 | 0.8776 | 0.7741 |
|
80 |
-
| 0.8659 | 0.7214 | 135000 | 0.8614 | 0.7771 |
|
81 |
-
| 0.8635 | 0.7481 | 140000 | 0.8618 | 0.7772 |
|
82 |
-
| 0.865 | 0.7749 | 145000 | 0.8561 | 0.7783 |
|
83 |
-
| 0.8563 | 0.8016 | 150000 | 0.8585 | 0.7781 |
|
84 |
-
| 0.8566 | 0.8283 | 155000 | 0.8493 | 0.7797 |
|
85 |
-
| 0.8541 | 0.8550 | 160000 | 0.8493 | 0.7805 |
|
86 |
-
| 0.8568 | 0.8817 | 165000 | 0.8431 | 0.7818 |
|
87 |
-
| 0.846 | 0.9085 | 170000 | 0.8424 | 0.7819 |
|
88 |
-
| 0.8479 | 0.9352 | 175000 | 0.8433 | 0.7812 |
|
89 |
-
| 0.8486 | 0.9619 | 180000 | 0.8412 | 0.7823 |
|
90 |
-
| 0.8398 | 0.9886 | 185000 | 0.8421 | 0.7818 |
|
91 |
-
| 0.825 | 1.0153 | 190000 | 0.8355 | 0.7837 |
|
92 |
-
| 0.8316 | 1.0421 | 195000 | 0.8354 | 0.7831 |
|
93 |
-
| 0.8293 | 1.0688 | 200000 | 0.8571 | 0.7790 |
|
94 |
-
| 0.8243 | 1.0955 | 205000 | 0.8288 | 0.7852 |
|
95 |
-
| 0.824 | 1.1222 | 210000 | 0.8293 | 0.7851 |
|
96 |
-
| 0.8277 | 1.1489 | 215000 | 0.8256 | 0.7859 |
|
97 |
-
| 0.823 | 1.1757 | 220000 | 0.8223 | 0.7869 |
|
98 |
-
| 0.8189 | 1.2024 | 225000 | 0.8226 | 0.7865 |
|
99 |
-
| 0.8138 | 1.2291 | 230000 | 0.8217 | 0.7871 |
|
100 |
-
| 0.8149 | 1.2558 | 235000 | 0.8215 | 0.7872 |
|
101 |
-
| 0.8135 | 1.2825 | 240000 | 0.8163 | 0.7880 |
|
102 |
-
| 0.8208 | 1.3093 | 245000 | 0.8141 | 0.7889 |
|
103 |
-
| 0.8168 | 1.3360 | 250000 | 0.8150 | 0.7882 |
|
104 |
-
| 0.8124 | 1.3627 | 255000 | 0.8124 | 0.7888 |
|
105 |
-
| 0.8082 | 1.3894 | 260000 | 0.8113 | 0.7894 |
|
106 |
-
| 0.8162 | 1.4161 | 265000 | 0.8140 | 0.7884 |
|
107 |
-
| 0.8061 | 1.4429 | 270000 | 0.8129 | 0.7890 |
|
108 |
-
| 0.8076 | 1.4696 | 275000 | 0.8072 | 0.7899 |
|
109 |
-
| 0.8112 | 1.4963 | 280000 | 0.8064 | 0.7907 |
|
110 |
-
| 0.8047 | 1.5230 | 285000 | 0.8061 | 0.7903 |
|
111 |
-
| 0.8101 | 1.5497 | 290000 | 0.8086 | 0.7901 |
|
112 |
-
| 0.8065 | 1.5765 | 295000 | 0.8032 | 0.7912 |
|
113 |
-
| 0.7998 | 1.6032 | 300000 | 0.8048 | 0.7909 |
|
114 |
-
| 0.8053 | 1.6299 | 305000 | 0.7993 | 0.7920 |
|
115 |
-
| 0.8007 | 1.6566 | 310000 | 0.8007 | 0.7921 |
|
116 |
-
| 0.7985 | 1.6833 | 315000 | 0.7988 | 0.7923 |
|
117 |
-
| 0.8006 | 1.7101 | 320000 | 0.8230 | 0.7873 |
|
118 |
-
| 0.8046 | 1.7368 | 325000 | 0.7959 | 0.7930 |
|
119 |
-
| 0.794 | 1.7635 | 330000 | 0.7956 | 0.7928 |
|
120 |
-
| 0.8047 | 1.7902 | 335000 | 0.8202 | 0.7881 |
|
121 |
-
| 0.802 | 1.8169 | 340000 | 0.7953 | 0.7930 |
|
122 |
-
| 0.7926 | 1.8436 | 345000 | 0.8007 | 0.7919 |
|
123 |
-
| 0.7939 | 1.8704 | 350000 | 0.7918 | 0.7937 |
|
124 |
-
| 0.7894 | 1.8971 | 355000 | 0.7911 | 0.7939 |
|
125 |
-
| 0.7953 | 1.9238 | 360000 | 0.7879 | 0.7951 |
|
126 |
-
| 0.7904 | 1.9505 | 365000 | 0.7922 | 0.7936 |
|
127 |
-
| 0.7887 | 1.9772 | 370000 | 0.7899 | 0.7941 |
|
128 |
-
| 0.7788 | 2.0040 | 375000 | 0.7888 | 0.7950 |
|
129 |
|
130 |
|
131 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
|
|
13 |
|
14 |
# results
|
15 |
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.1000
|
19 |
+
- Accuracy: 0.7236
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|:--------:|
|
52 |
+
| 1.7698 | 0.2844 | 5000 | 1.7124 | 0.5802 |
|
53 |
+
| 1.5445 | 0.5689 | 10000 | 1.5021 | 0.6270 |
|
54 |
+
| 1.439 | 0.8533 | 15000 | 1.3989 | 0.6520 |
|
55 |
+
| 1.3625 | 1.1377 | 20000 | 1.3447 | 0.6647 |
|
56 |
+
| 1.3192 | 1.4222 | 25000 | 1.2965 | 0.6756 |
|
57 |
+
| 1.3 | 1.7066 | 30000 | 1.2788 | 0.6795 |
|
58 |
+
| 1.2695 | 1.9910 | 35000 | 1.2347 | 0.6900 |
|
59 |
+
| 1.2297 | 2.2754 | 40000 | 1.2160 | 0.6955 |
|
60 |
+
| 1.2144 | 2.5599 | 45000 | 1.1894 | 0.7021 |
|
61 |
+
| 1.1945 | 2.8443 | 50000 | 1.1734 | 0.7058 |
|
62 |
+
| 1.1551 | 3.1287 | 55000 | 1.1611 | 0.7084 |
|
63 |
+
| 1.1471 | 3.4132 | 60000 | 1.1523 | 0.7104 |
|
64 |
+
| 1.1301 | 3.6976 | 65000 | 1.1314 | 0.7156 |
|
65 |
+
| 1.1286 | 3.9820 | 70000 | 1.1220 | 0.7186 |
|
66 |
+
| 1.0898 | 4.2665 | 75000 | 1.1140 | 0.7203 |
|
67 |
+
| 1.093 | 4.5509 | 80000 | 1.1040 | 0.7232 |
|
68 |
+
| 1.0893 | 4.8353 | 85000 | 1.0986 | 0.7246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second":
|
8 |
-
"total_flos":
|
9 |
-
"train_loss":
|
10 |
-
"train_runtime":
|
11 |
-
"train_samples_per_second":
|
12 |
-
"train_steps_per_second":
|
13 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.723616,
|
4 |
+
"eval_loss": 1.100016713142395,
|
5 |
+
"eval_runtime": 118.4292,
|
6 |
+
"eval_samples_per_second": 2110.967,
|
7 |
+
"eval_steps_per_second": 8.25,
|
8 |
+
"total_flos": 5.4597445596112486e+17,
|
9 |
+
"train_loss": 1.296092871571504,
|
10 |
+
"train_runtime": 24664.1985,
|
11 |
+
"train_samples_per_second": 912.253,
|
12 |
+
"train_steps_per_second": 3.564
|
13 |
}
|
config.json
CHANGED
@@ -1,31 +1,127 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "apple/mobilevitv2-1.0-imagenet1k-256",
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"aspp_dropout_prob": 0.1,
|
7 |
-
"aspp_out_channels":
|
8 |
"atrous_rates": [
|
9 |
6,
|
10 |
12,
|
11 |
18
|
12 |
],
|
13 |
-
"
|
14 |
-
"base_attn_unit_dims": [
|
15 |
-
128,
|
16 |
-
192,
|
17 |
-
256
|
18 |
-
],
|
19 |
"classifier_dropout_prob": 0.1,
|
20 |
"conv_kernel_size": 3,
|
21 |
-
"expand_ratio":
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
|
|
|
|
|
|
|
|
|
|
25 |
"id2label": {
|
26 |
"0": "aircraft carrier",
|
27 |
"1": "airplane",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"10": "asparagus",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"100": "dumbbell",
|
30 |
"101": "ear",
|
31 |
"102": "elbow",
|
@@ -36,7 +132,6 @@
|
|
36 |
"107": "eyeglasses",
|
37 |
"108": "face",
|
38 |
"109": "fan",
|
39 |
-
"11": "axe",
|
40 |
"110": "feather",
|
41 |
"111": "fence",
|
42 |
"112": "finger",
|
@@ -47,7 +142,6 @@
|
|
47 |
"117": "flamingo",
|
48 |
"118": "flashlight",
|
49 |
"119": "flip flops",
|
50 |
-
"12": "backpack",
|
51 |
"120": "floor lamp",
|
52 |
"121": "flower",
|
53 |
"122": "flying saucer",
|
@@ -58,7 +152,6 @@
|
|
58 |
"127": "garden hose",
|
59 |
"128": "garden",
|
60 |
"129": "giraffe",
|
61 |
-
"13": "banana",
|
62 |
"130": "goatee",
|
63 |
"131": "golf club",
|
64 |
"132": "grapes",
|
@@ -69,7 +162,6 @@
|
|
69 |
"137": "hand",
|
70 |
"138": "harp",
|
71 |
"139": "hat",
|
72 |
-
"14": "bandage",
|
73 |
"140": "headphones",
|
74 |
"141": "hedgehog",
|
75 |
"142": "helicopter",
|
@@ -80,7 +172,6 @@
|
|
80 |
"147": "horse",
|
81 |
"148": "hospital",
|
82 |
"149": "hot air balloon",
|
83 |
-
"15": "barn",
|
84 |
"150": "hot dog",
|
85 |
"151": "hot tub",
|
86 |
"152": "hourglass",
|
@@ -91,7 +182,6 @@
|
|
91 |
"157": "jacket",
|
92 |
"158": "jail",
|
93 |
"159": "kangaroo",
|
94 |
-
"16": "baseball bat",
|
95 |
"160": "key",
|
96 |
"161": "keyboard",
|
97 |
"162": "knee",
|
@@ -102,7 +192,6 @@
|
|
102 |
"167": "leaf",
|
103 |
"168": "leg",
|
104 |
"169": "light bulb",
|
105 |
-
"17": "baseball",
|
106 |
"170": "lighter",
|
107 |
"171": "lighthouse",
|
108 |
"172": "lightning",
|
@@ -113,7 +202,6 @@
|
|
113 |
"177": "lollipop",
|
114 |
"178": "mailbox",
|
115 |
"179": "map",
|
116 |
-
"18": "basket",
|
117 |
"180": "marker",
|
118 |
"181": "matches",
|
119 |
"182": "megaphone",
|
@@ -124,7 +212,6 @@
|
|
124 |
"187": "moon",
|
125 |
"188": "mosquito",
|
126 |
"189": "motorbike",
|
127 |
-
"19": "basketball",
|
128 |
"190": "mountain",
|
129 |
"191": "mouse",
|
130 |
"192": "moustache",
|
@@ -135,8 +222,6 @@
|
|
135 |
"197": "necklace",
|
136 |
"198": "nose",
|
137 |
"199": "ocean",
|
138 |
-
"2": "alarm clock",
|
139 |
-
"20": "bat",
|
140 |
"200": "octagon",
|
141 |
"201": "octopus",
|
142 |
"202": "onion",
|
@@ -147,7 +232,6 @@
|
|
147 |
"207": "palm tree",
|
148 |
"208": "panda",
|
149 |
"209": "pants",
|
150 |
-
"21": "bathtub",
|
151 |
"210": "paper clip",
|
152 |
"211": "parachute",
|
153 |
"212": "parrot",
|
@@ -158,7 +242,6 @@
|
|
158 |
"217": "pencil",
|
159 |
"218": "penguin",
|
160 |
"219": "piano",
|
161 |
-
"22": "beach",
|
162 |
"220": "pickup truck",
|
163 |
"221": "picture frame",
|
164 |
"222": "pig",
|
@@ -169,7 +252,6 @@
|
|
169 |
"227": "police car",
|
170 |
"228": "pond",
|
171 |
"229": "pool",
|
172 |
-
"23": "bear",
|
173 |
"230": "popsicle",
|
174 |
"231": "postcard",
|
175 |
"232": "potato",
|
@@ -180,7 +262,6 @@
|
|
180 |
"237": "radio",
|
181 |
"238": "rain",
|
182 |
"239": "rainbow",
|
183 |
-
"24": "beard",
|
184 |
"240": "rake",
|
185 |
"241": "remote control",
|
186 |
"242": "rhinoceros",
|
@@ -191,7 +272,6 @@
|
|
191 |
"247": "sailboat",
|
192 |
"248": "sandwich",
|
193 |
"249": "saw",
|
194 |
-
"25": "bed",
|
195 |
"250": "saxophone",
|
196 |
"251": "school bus",
|
197 |
"252": "scissors",
|
@@ -202,7 +282,6 @@
|
|
202 |
"257": "shark",
|
203 |
"258": "sheep",
|
204 |
"259": "shoe",
|
205 |
-
"26": "bee",
|
206 |
"260": "shorts",
|
207 |
"261": "shovel",
|
208 |
"262": "sink",
|
@@ -213,7 +292,6 @@
|
|
213 |
"267": "smiley face",
|
214 |
"268": "snail",
|
215 |
"269": "snake",
|
216 |
-
"27": "belt",
|
217 |
"270": "snorkel",
|
218 |
"271": "snowflake",
|
219 |
"272": "snowman",
|
@@ -224,7 +302,6 @@
|
|
224 |
"277": "spoon",
|
225 |
"278": "spreadsheet",
|
226 |
"279": "square",
|
227 |
-
"28": "bench",
|
228 |
"280": "squiggle",
|
229 |
"281": "squirrel",
|
230 |
"282": "stairs",
|
@@ -235,7 +312,6 @@
|
|
235 |
"287": "stitches",
|
236 |
"288": "stop sign",
|
237 |
"289": "stove",
|
238 |
-
"29": "bicycle",
|
239 |
"290": "strawberry",
|
240 |
"291": "streetlight",
|
241 |
"292": "string bean",
|
@@ -246,8 +322,6 @@
|
|
246 |
"297": "sweater",
|
247 |
"298": "swing set",
|
248 |
"299": "sword",
|
249 |
-
"3": "ambulance",
|
250 |
-
"30": "binoculars",
|
251 |
"300": "syringe",
|
252 |
"301": "t-shirt",
|
253 |
"302": "table",
|
@@ -258,7 +332,6 @@
|
|
258 |
"307": "tennis racquet",
|
259 |
"308": "tent",
|
260 |
"309": "The Eiffel Tower",
|
261 |
-
"31": "bird",
|
262 |
"310": "The Great Wall of China",
|
263 |
"311": "The Mona Lisa",
|
264 |
"312": "tiger",
|
@@ -269,7 +342,6 @@
|
|
269 |
"317": "toothbrush",
|
270 |
"318": "toothpaste",
|
271 |
"319": "tornado",
|
272 |
-
"32": "birthday cake",
|
273 |
"320": "tractor",
|
274 |
"321": "traffic light",
|
275 |
"322": "train",
|
@@ -280,7 +352,6 @@
|
|
280 |
"327": "trumpet",
|
281 |
"328": "umbrella",
|
282 |
"329": "underwear",
|
283 |
-
"33": "blackberry",
|
284 |
"330": "van",
|
285 |
"331": "vase",
|
286 |
"332": "violin",
|
@@ -291,86 +362,16 @@
|
|
291 |
"337": "wheel",
|
292 |
"338": "windmill",
|
293 |
"339": "wine bottle",
|
294 |
-
"34": "blueberry",
|
295 |
"340": "wine glass",
|
296 |
"341": "wristwatch",
|
297 |
"342": "yoga",
|
298 |
"343": "zebra",
|
299 |
-
"344": "zigzag"
|
300 |
-
"35": "book",
|
301 |
-
"36": "boomerang",
|
302 |
-
"37": "bottlecap",
|
303 |
-
"38": "bowtie",
|
304 |
-
"39": "bracelet",
|
305 |
-
"4": "angel",
|
306 |
-
"40": "brain",
|
307 |
-
"41": "bread",
|
308 |
-
"42": "bridge",
|
309 |
-
"43": "broccoli",
|
310 |
-
"44": "broom",
|
311 |
-
"45": "bucket",
|
312 |
-
"46": "bulldozer",
|
313 |
-
"47": "bus",
|
314 |
-
"48": "bush",
|
315 |
-
"49": "butterfly",
|
316 |
-
"5": "animal migration",
|
317 |
-
"50": "cactus",
|
318 |
-
"51": "cake",
|
319 |
-
"52": "calculator",
|
320 |
-
"53": "calendar",
|
321 |
-
"54": "camel",
|
322 |
-
"55": "camera",
|
323 |
-
"56": "camouflage",
|
324 |
-
"57": "campfire",
|
325 |
-
"58": "candle",
|
326 |
-
"59": "cannon",
|
327 |
-
"6": "ant",
|
328 |
-
"60": "canoe",
|
329 |
-
"61": "car",
|
330 |
-
"62": "carrot",
|
331 |
-
"63": "castle",
|
332 |
-
"64": "cat",
|
333 |
-
"65": "ceiling fan",
|
334 |
-
"66": "cell phone",
|
335 |
-
"67": "cello",
|
336 |
-
"68": "chair",
|
337 |
-
"69": "chandelier",
|
338 |
-
"7": "anvil",
|
339 |
-
"70": "church",
|
340 |
-
"71": "circle",
|
341 |
-
"72": "clarinet",
|
342 |
-
"73": "clock",
|
343 |
-
"74": "cloud",
|
344 |
-
"75": "coffee cup",
|
345 |
-
"76": "compass",
|
346 |
-
"77": "computer",
|
347 |
-
"78": "cookie",
|
348 |
-
"79": "cooler",
|
349 |
-
"8": "apple",
|
350 |
-
"80": "couch",
|
351 |
-
"81": "cow",
|
352 |
-
"82": "crab",
|
353 |
-
"83": "crayon",
|
354 |
-
"84": "crocodile",
|
355 |
-
"85": "crown",
|
356 |
-
"86": "cruise ship",
|
357 |
-
"87": "cup",
|
358 |
-
"88": "diamond",
|
359 |
-
"89": "dishwasher",
|
360 |
-
"9": "arm",
|
361 |
-
"90": "diving board",
|
362 |
-
"91": "dog",
|
363 |
-
"92": "dolphin",
|
364 |
-
"93": "donut",
|
365 |
-
"94": "door",
|
366 |
-
"95": "dragon",
|
367 |
-
"96": "dresser",
|
368 |
-
"97": "drill",
|
369 |
-
"98": "drums",
|
370 |
-
"99": "duck"
|
371 |
},
|
|
|
372 |
"image_size": 64,
|
373 |
"initializer_range": 0.02,
|
|
|
374 |
"label2id": {
|
375 |
"The Eiffel Tower": "309",
|
376 |
"The Great Wall of China": "310",
|
@@ -720,18 +721,24 @@
|
|
720 |
},
|
721 |
"layer_norm_eps": 1e-05,
|
722 |
"mlp_ratio": 2.0,
|
723 |
-
"model_type": "
|
724 |
-
"
|
725 |
-
|
726 |
-
|
727 |
-
|
|
|
|
|
|
|
|
|
728 |
],
|
|
|
729 |
"num_channels": 1,
|
|
|
730 |
"output_stride": 32,
|
731 |
-
"patch_size":
|
732 |
"problem_type": "single_label_classification",
|
|
|
733 |
"semantic_loss_ignore_index": 255,
|
734 |
"torch_dtype": "float32",
|
735 |
-
"transformers_version": "4.40.0"
|
736 |
-
"width_multiplier": 1.0
|
737 |
}
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
+
"MobileViTForImageClassification"
|
4 |
],
|
5 |
"aspp_dropout_prob": 0.1,
|
6 |
+
"aspp_out_channels": 256,
|
7 |
"atrous_rates": [
|
8 |
6,
|
9 |
12,
|
10 |
18
|
11 |
],
|
12 |
+
"attention_probs_dropout_prob": 0.1,
|
|
|
|
|
|
|
|
|
|
|
13 |
"classifier_dropout_prob": 0.1,
|
14 |
"conv_kernel_size": 3,
|
15 |
+
"expand_ratio": 4.0,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.1,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"hidden_sizes": [
|
20 |
+
144,
|
21 |
+
192,
|
22 |
+
240
|
23 |
+
],
|
24 |
"id2label": {
|
25 |
"0": "aircraft carrier",
|
26 |
"1": "airplane",
|
27 |
+
"2": "alarm clock",
|
28 |
+
"3": "ambulance",
|
29 |
+
"4": "angel",
|
30 |
+
"5": "animal migration",
|
31 |
+
"6": "ant",
|
32 |
+
"7": "anvil",
|
33 |
+
"8": "apple",
|
34 |
+
"9": "arm",
|
35 |
"10": "asparagus",
|
36 |
+
"11": "axe",
|
37 |
+
"12": "backpack",
|
38 |
+
"13": "banana",
|
39 |
+
"14": "bandage",
|
40 |
+
"15": "barn",
|
41 |
+
"16": "baseball bat",
|
42 |
+
"17": "baseball",
|
43 |
+
"18": "basket",
|
44 |
+
"19": "basketball",
|
45 |
+
"20": "bat",
|
46 |
+
"21": "bathtub",
|
47 |
+
"22": "beach",
|
48 |
+
"23": "bear",
|
49 |
+
"24": "beard",
|
50 |
+
"25": "bed",
|
51 |
+
"26": "bee",
|
52 |
+
"27": "belt",
|
53 |
+
"28": "bench",
|
54 |
+
"29": "bicycle",
|
55 |
+
"30": "binoculars",
|
56 |
+
"31": "bird",
|
57 |
+
"32": "birthday cake",
|
58 |
+
"33": "blackberry",
|
59 |
+
"34": "blueberry",
|
60 |
+
"35": "book",
|
61 |
+
"36": "boomerang",
|
62 |
+
"37": "bottlecap",
|
63 |
+
"38": "bowtie",
|
64 |
+
"39": "bracelet",
|
65 |
+
"40": "brain",
|
66 |
+
"41": "bread",
|
67 |
+
"42": "bridge",
|
68 |
+
"43": "broccoli",
|
69 |
+
"44": "broom",
|
70 |
+
"45": "bucket",
|
71 |
+
"46": "bulldozer",
|
72 |
+
"47": "bus",
|
73 |
+
"48": "bush",
|
74 |
+
"49": "butterfly",
|
75 |
+
"50": "cactus",
|
76 |
+
"51": "cake",
|
77 |
+
"52": "calculator",
|
78 |
+
"53": "calendar",
|
79 |
+
"54": "camel",
|
80 |
+
"55": "camera",
|
81 |
+
"56": "camouflage",
|
82 |
+
"57": "campfire",
|
83 |
+
"58": "candle",
|
84 |
+
"59": "cannon",
|
85 |
+
"60": "canoe",
|
86 |
+
"61": "car",
|
87 |
+
"62": "carrot",
|
88 |
+
"63": "castle",
|
89 |
+
"64": "cat",
|
90 |
+
"65": "ceiling fan",
|
91 |
+
"66": "cell phone",
|
92 |
+
"67": "cello",
|
93 |
+
"68": "chair",
|
94 |
+
"69": "chandelier",
|
95 |
+
"70": "church",
|
96 |
+
"71": "circle",
|
97 |
+
"72": "clarinet",
|
98 |
+
"73": "clock",
|
99 |
+
"74": "cloud",
|
100 |
+
"75": "coffee cup",
|
101 |
+
"76": "compass",
|
102 |
+
"77": "computer",
|
103 |
+
"78": "cookie",
|
104 |
+
"79": "cooler",
|
105 |
+
"80": "couch",
|
106 |
+
"81": "cow",
|
107 |
+
"82": "crab",
|
108 |
+
"83": "crayon",
|
109 |
+
"84": "crocodile",
|
110 |
+
"85": "crown",
|
111 |
+
"86": "cruise ship",
|
112 |
+
"87": "cup",
|
113 |
+
"88": "diamond",
|
114 |
+
"89": "dishwasher",
|
115 |
+
"90": "diving board",
|
116 |
+
"91": "dog",
|
117 |
+
"92": "dolphin",
|
118 |
+
"93": "donut",
|
119 |
+
"94": "door",
|
120 |
+
"95": "dragon",
|
121 |
+
"96": "dresser",
|
122 |
+
"97": "drill",
|
123 |
+
"98": "drums",
|
124 |
+
"99": "duck",
|
125 |
"100": "dumbbell",
|
126 |
"101": "ear",
|
127 |
"102": "elbow",
|
|
|
132 |
"107": "eyeglasses",
|
133 |
"108": "face",
|
134 |
"109": "fan",
|
|
|
135 |
"110": "feather",
|
136 |
"111": "fence",
|
137 |
"112": "finger",
|
|
|
142 |
"117": "flamingo",
|
143 |
"118": "flashlight",
|
144 |
"119": "flip flops",
|
|
|
145 |
"120": "floor lamp",
|
146 |
"121": "flower",
|
147 |
"122": "flying saucer",
|
|
|
152 |
"127": "garden hose",
|
153 |
"128": "garden",
|
154 |
"129": "giraffe",
|
|
|
155 |
"130": "goatee",
|
156 |
"131": "golf club",
|
157 |
"132": "grapes",
|
|
|
162 |
"137": "hand",
|
163 |
"138": "harp",
|
164 |
"139": "hat",
|
|
|
165 |
"140": "headphones",
|
166 |
"141": "hedgehog",
|
167 |
"142": "helicopter",
|
|
|
172 |
"147": "horse",
|
173 |
"148": "hospital",
|
174 |
"149": "hot air balloon",
|
|
|
175 |
"150": "hot dog",
|
176 |
"151": "hot tub",
|
177 |
"152": "hourglass",
|
|
|
182 |
"157": "jacket",
|
183 |
"158": "jail",
|
184 |
"159": "kangaroo",
|
|
|
185 |
"160": "key",
|
186 |
"161": "keyboard",
|
187 |
"162": "knee",
|
|
|
192 |
"167": "leaf",
|
193 |
"168": "leg",
|
194 |
"169": "light bulb",
|
|
|
195 |
"170": "lighter",
|
196 |
"171": "lighthouse",
|
197 |
"172": "lightning",
|
|
|
202 |
"177": "lollipop",
|
203 |
"178": "mailbox",
|
204 |
"179": "map",
|
|
|
205 |
"180": "marker",
|
206 |
"181": "matches",
|
207 |
"182": "megaphone",
|
|
|
212 |
"187": "moon",
|
213 |
"188": "mosquito",
|
214 |
"189": "motorbike",
|
|
|
215 |
"190": "mountain",
|
216 |
"191": "mouse",
|
217 |
"192": "moustache",
|
|
|
222 |
"197": "necklace",
|
223 |
"198": "nose",
|
224 |
"199": "ocean",
|
|
|
|
|
225 |
"200": "octagon",
|
226 |
"201": "octopus",
|
227 |
"202": "onion",
|
|
|
232 |
"207": "palm tree",
|
233 |
"208": "panda",
|
234 |
"209": "pants",
|
|
|
235 |
"210": "paper clip",
|
236 |
"211": "parachute",
|
237 |
"212": "parrot",
|
|
|
242 |
"217": "pencil",
|
243 |
"218": "penguin",
|
244 |
"219": "piano",
|
|
|
245 |
"220": "pickup truck",
|
246 |
"221": "picture frame",
|
247 |
"222": "pig",
|
|
|
252 |
"227": "police car",
|
253 |
"228": "pond",
|
254 |
"229": "pool",
|
|
|
255 |
"230": "popsicle",
|
256 |
"231": "postcard",
|
257 |
"232": "potato",
|
|
|
262 |
"237": "radio",
|
263 |
"238": "rain",
|
264 |
"239": "rainbow",
|
|
|
265 |
"240": "rake",
|
266 |
"241": "remote control",
|
267 |
"242": "rhinoceros",
|
|
|
272 |
"247": "sailboat",
|
273 |
"248": "sandwich",
|
274 |
"249": "saw",
|
|
|
275 |
"250": "saxophone",
|
276 |
"251": "school bus",
|
277 |
"252": "scissors",
|
|
|
282 |
"257": "shark",
|
283 |
"258": "sheep",
|
284 |
"259": "shoe",
|
|
|
285 |
"260": "shorts",
|
286 |
"261": "shovel",
|
287 |
"262": "sink",
|
|
|
292 |
"267": "smiley face",
|
293 |
"268": "snail",
|
294 |
"269": "snake",
|
|
|
295 |
"270": "snorkel",
|
296 |
"271": "snowflake",
|
297 |
"272": "snowman",
|
|
|
302 |
"277": "spoon",
|
303 |
"278": "spreadsheet",
|
304 |
"279": "square",
|
|
|
305 |
"280": "squiggle",
|
306 |
"281": "squirrel",
|
307 |
"282": "stairs",
|
|
|
312 |
"287": "stitches",
|
313 |
"288": "stop sign",
|
314 |
"289": "stove",
|
|
|
315 |
"290": "strawberry",
|
316 |
"291": "streetlight",
|
317 |
"292": "string bean",
|
|
|
322 |
"297": "sweater",
|
323 |
"298": "swing set",
|
324 |
"299": "sword",
|
|
|
|
|
325 |
"300": "syringe",
|
326 |
"301": "t-shirt",
|
327 |
"302": "table",
|
|
|
332 |
"307": "tennis racquet",
|
333 |
"308": "tent",
|
334 |
"309": "The Eiffel Tower",
|
|
|
335 |
"310": "The Great Wall of China",
|
336 |
"311": "The Mona Lisa",
|
337 |
"312": "tiger",
|
|
|
342 |
"317": "toothbrush",
|
343 |
"318": "toothpaste",
|
344 |
"319": "tornado",
|
|
|
345 |
"320": "tractor",
|
346 |
"321": "traffic light",
|
347 |
"322": "train",
|
|
|
352 |
"327": "trumpet",
|
353 |
"328": "umbrella",
|
354 |
"329": "underwear",
|
|
|
355 |
"330": "van",
|
356 |
"331": "vase",
|
357 |
"332": "violin",
|
|
|
362 |
"337": "wheel",
|
363 |
"338": "windmill",
|
364 |
"339": "wine bottle",
|
|
|
365 |
"340": "wine glass",
|
366 |
"341": "wristwatch",
|
367 |
"342": "yoga",
|
368 |
"343": "zebra",
|
369 |
+
"344": "zigzag"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
},
|
371 |
+
"ignore_mismatched_sizes": true,
|
372 |
"image_size": 64,
|
373 |
"initializer_range": 0.02,
|
374 |
+
"intermediate_size": 3072,
|
375 |
"label2id": {
|
376 |
"The Eiffel Tower": "309",
|
377 |
"The Great Wall of China": "310",
|
|
|
721 |
},
|
722 |
"layer_norm_eps": 1e-05,
|
723 |
"mlp_ratio": 2.0,
|
724 |
+
"model_type": "mobilevit",
|
725 |
+
"neck_hidden_sizes": [
|
726 |
+
16,
|
727 |
+
32,
|
728 |
+
64,
|
729 |
+
96,
|
730 |
+
128,
|
731 |
+
160,
|
732 |
+
640
|
733 |
],
|
734 |
+
"num_attention_heads": 12,
|
735 |
"num_channels": 1,
|
736 |
+
"num_hidden_layers": 12,
|
737 |
"output_stride": 32,
|
738 |
+
"patch_size": 16,
|
739 |
"problem_type": "single_label_classification",
|
740 |
+
"qkv_bias": true,
|
741 |
"semantic_loss_ignore_index": 255,
|
742 |
"torch_dtype": "float32",
|
743 |
+
"transformers_version": "4.40.0"
|
|
|
744 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d35f61619e3ffc371ead68851aa0232c0fe6cc18ab6a5362d0e589c58eb59a19
|
3 |
+
size 20730036
|
preprocessor_config.json
CHANGED
@@ -15,8 +15,8 @@
|
|
15 |
"input_data_format"
|
16 |
],
|
17 |
"crop_size": {
|
18 |
-
"height":
|
19 |
-
"width":
|
20 |
},
|
21 |
"do_center_crop": true,
|
22 |
"do_convert_rgb": false,
|
@@ -27,6 +27,6 @@
|
|
27 |
"resample": 2,
|
28 |
"rescale_factor": 0.00392156862745098,
|
29 |
"size": {
|
30 |
-
"shortest_edge":
|
31 |
}
|
32 |
}
|
|
|
15 |
"input_data_format"
|
16 |
],
|
17 |
"crop_size": {
|
18 |
+
"height": 28,
|
19 |
+
"width": 28
|
20 |
},
|
21 |
"do_center_crop": true,
|
22 |
"do_convert_rgb": false,
|
|
|
27 |
"resample": 2,
|
28 |
"rescale_factor": 0.00392156862745098,
|
29 |
"size": {
|
30 |
+
"shortest_edge": 28
|
31 |
}
|
32 |
}
|
test_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime":
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"eval_accuracy": 0.723616,
|
4 |
+
"eval_loss": 1.100016713142395,
|
5 |
+
"eval_runtime": 118.4292,
|
6 |
+
"eval_samples_per_second": 2110.967,
|
7 |
+
"eval_steps_per_second": 8.25
|
8 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"total_flos": 5.4597445596112486e+17,
|
4 |
+
"train_loss": 1.296092871571504,
|
5 |
+
"train_runtime": 24664.1985,
|
6 |
+
"train_samples_per_second": 912.253,
|
7 |
+
"train_steps_per_second": 3.564
|
8 |
}
|
trainer_state.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb6b0f81e80c1f33b16aaf9c2fc69495be719e29fb2dfcec7d7a4debabe294f0
|
3 |
+
size 4920
|