laszlokiss27 commited on
Commit
d22c14f
1 Parent(s): c8cf488

doodle-dash-vit2

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
README.md CHANGED
@@ -1,8 +1,9 @@
1
  ---
2
- license: apache-2.0
3
- base_model: google/vit-base-patch16-224
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: results
8
  results: []
@@ -13,14 +14,10 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # results
15
 
16
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - eval_loss: 5.9224
19
- - eval_accuracy: 0.0032
20
- - eval_runtime: 38.6479
21
- - eval_samples_per_second: 6523.813
22
- - eval_steps_per_second: 25.486
23
- - step: 0
24
 
25
  ## Model description
26
 
@@ -49,6 +46,207 @@ The following hyperparameters were used during training:
49
  - num_epochs: 5
50
  - mixed_precision_training: Native AMP
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ### Framework versions
53
 
54
  - Transformers 4.40.0
 
1
  ---
2
+ base_model: laszlokiss27/doodle-dash2
 
3
  tags:
4
  - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
  model-index:
8
  - name: results
9
  results: []
 
14
 
15
  # results
16
 
17
+ This model is a fine-tuned version of [laszlokiss27/doodle-dash2](https://huggingface.co/laszlokiss27/doodle-dash2) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.7177
20
+ - Accuracy: 0.8121
 
 
 
 
21
 
22
  ## Model description
23
 
 
46
  - num_epochs: 5
47
  - mixed_precision_training: Native AMP
48
 
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:------:|:------:|:---------------:|:--------:|
53
+ | 0.9709 | 0.0256 | 5000 | 0.9170 | 0.7612 |
54
+ | 0.9635 | 0.0513 | 10000 | 0.9147 | 0.7623 |
55
+ | 0.9518 | 0.0769 | 15000 | 0.9081 | 0.7646 |
56
+ | 0.9472 | 0.1026 | 20000 | 0.9044 | 0.7656 |
57
+ | 0.9443 | 0.1282 | 25000 | 0.9061 | 0.7660 |
58
+ | 0.93 | 0.1538 | 30000 | 0.9071 | 0.7651 |
59
+ | 0.9206 | 0.1795 | 35000 | 0.8963 | 0.7680 |
60
+ | 0.9214 | 0.2051 | 40000 | 0.8910 | 0.7693 |
61
+ | 0.912 | 0.2308 | 45000 | 0.8914 | 0.7687 |
62
+ | 0.9113 | 0.2564 | 50000 | 0.8801 | 0.7719 |
63
+ | 0.9035 | 0.2820 | 55000 | 0.8803 | 0.7723 |
64
+ | 0.9035 | 0.3077 | 60000 | 0.8798 | 0.7717 |
65
+ | 0.8898 | 0.3333 | 65000 | 0.8822 | 0.7719 |
66
+ | 0.8874 | 0.3590 | 70000 | 0.8703 | 0.7748 |
67
+ | 0.8848 | 0.3846 | 75000 | 0.8623 | 0.7764 |
68
+ | 0.8817 | 0.4102 | 80000 | 0.8609 | 0.7766 |
69
+ | 0.8765 | 0.4359 | 85000 | 0.8599 | 0.7769 |
70
+ | 0.8763 | 0.4615 | 90000 | 0.8532 | 0.7787 |
71
+ | 0.8714 | 0.4872 | 95000 | 0.8572 | 0.7774 |
72
+ | 0.869 | 0.5128 | 100000 | 0.8479 | 0.7796 |
73
+ | 0.8672 | 0.5384 | 105000 | 0.8480 | 0.7798 |
74
+ | 0.8632 | 0.5641 | 110000 | 0.8520 | 0.7792 |
75
+ | 0.8592 | 0.5897 | 115000 | 0.8433 | 0.7811 |
76
+ | 0.8607 | 0.6154 | 120000 | 0.8428 | 0.7811 |
77
+ | 0.853 | 0.6410 | 125000 | 0.8375 | 0.7827 |
78
+ | 0.8541 | 0.6666 | 130000 | 0.8455 | 0.7805 |
79
+ | 0.8473 | 0.6923 | 135000 | 0.8330 | 0.7838 |
80
+ | 0.8449 | 0.7179 | 140000 | 0.8305 | 0.7838 |
81
+ | 0.8465 | 0.7436 | 145000 | 0.8274 | 0.7850 |
82
+ | 0.8423 | 0.7692 | 150000 | 0.8325 | 0.7836 |
83
+ | 0.8454 | 0.7948 | 155000 | 0.8270 | 0.7849 |
84
+ | 0.8358 | 0.8205 | 160000 | 0.8328 | 0.7838 |
85
+ | 0.8389 | 0.8461 | 165000 | 0.8209 | 0.7868 |
86
+ | 0.8332 | 0.8718 | 170000 | 0.8340 | 0.7834 |
87
+ | 0.8357 | 0.8974 | 175000 | 0.8200 | 0.7864 |
88
+ | 0.8356 | 0.9230 | 180000 | 0.8162 | 0.7877 |
89
+ | 0.835 | 0.9487 | 185000 | 0.8181 | 0.7874 |
90
+ | 0.8298 | 0.9743 | 190000 | 0.8180 | 0.7874 |
91
+ | 0.8285 | 1.0000 | 195000 | 0.8154 | 0.7878 |
92
+ | 0.8138 | 1.0256 | 200000 | 0.8119 | 0.7889 |
93
+ | 0.8104 | 1.0512 | 205000 | 0.8087 | 0.7887 |
94
+ | 0.8162 | 1.0769 | 210000 | 0.8073 | 0.7895 |
95
+ | 0.8122 | 1.1025 | 215000 | 0.8053 | 0.7902 |
96
+ | 0.807 | 1.1282 | 220000 | 0.8064 | 0.7900 |
97
+ | 0.8114 | 1.1538 | 225000 | 0.8043 | 0.7907 |
98
+ | 0.8165 | 1.1794 | 230000 | 0.8042 | 0.7911 |
99
+ | 0.8124 | 1.2051 | 235000 | 0.8009 | 0.7910 |
100
+ | 0.8092 | 1.2307 | 240000 | 0.8019 | 0.7914 |
101
+ | 0.8023 | 1.2564 | 245000 | 0.7979 | 0.7921 |
102
+ | 0.8058 | 1.2820 | 250000 | 0.7988 | 0.7922 |
103
+ | 0.8057 | 1.3076 | 255000 | 0.7976 | 0.7923 |
104
+ | 0.8076 | 1.3333 | 260000 | 0.7976 | 0.7921 |
105
+ | 0.805 | 1.3589 | 265000 | 0.7953 | 0.7930 |
106
+ | 0.797 | 1.3846 | 270000 | 0.7990 | 0.7926 |
107
+ | 0.7997 | 1.4102 | 275000 | 0.7929 | 0.7935 |
108
+ | 0.8028 | 1.4358 | 280000 | 0.7933 | 0.7933 |
109
+ | 0.7981 | 1.4615 | 285000 | 0.7905 | 0.7934 |
110
+ | 0.8002 | 1.4871 | 290000 | 0.7965 | 0.7924 |
111
+ | 0.7984 | 1.5128 | 295000 | 0.7915 | 0.7933 |
112
+ | 0.7973 | 1.5384 | 300000 | 0.7950 | 0.7932 |
113
+ | 0.7933 | 1.5640 | 305000 | 0.7865 | 0.7950 |
114
+ | 0.7927 | 1.5897 | 310000 | 0.7886 | 0.7946 |
115
+ | 0.799 | 1.6153 | 315000 | 0.7840 | 0.7954 |
116
+ | 0.7961 | 1.6410 | 320000 | 0.8132 | 0.7901 |
117
+ | 0.7866 | 1.6666 | 325000 | 0.7829 | 0.7958 |
118
+ | 0.7898 | 1.6922 | 330000 | 0.7813 | 0.7959 |
119
+ | 0.7885 | 1.7179 | 335000 | 0.7796 | 0.7969 |
120
+ | 0.7901 | 1.7435 | 340000 | 0.7817 | 0.7958 |
121
+ | 0.7916 | 1.7692 | 345000 | 0.7823 | 0.7962 |
122
+ | 0.787 | 1.7948 | 350000 | 0.7789 | 0.7969 |
123
+ | 0.7822 | 1.8204 | 355000 | 0.7787 | 0.7968 |
124
+ | 0.7844 | 1.8461 | 360000 | 0.7754 | 0.7981 |
125
+ | 0.7849 | 1.8717 | 365000 | 0.7775 | 0.7972 |
126
+ | 0.7845 | 1.8974 | 370000 | 0.7761 | 0.7973 |
127
+ | 0.7905 | 1.9230 | 375000 | 0.7736 | 0.7983 |
128
+ | 0.788 | 1.9486 | 380000 | 0.7738 | 0.7978 |
129
+ | 0.7832 | 1.9743 | 385000 | 0.7719 | 0.7980 |
130
+ | 0.7787 | 1.9999 | 390000 | 0.7710 | 0.7986 |
131
+ | 0.767 | 2.0256 | 395000 | 0.7717 | 0.7985 |
132
+ | 0.7666 | 2.0512 | 400000 | 0.7698 | 0.7989 |
133
+ | 0.7631 | 2.0768 | 405000 | 0.7719 | 0.7982 |
134
+ | 0.7634 | 2.1025 | 410000 | 0.7684 | 0.7994 |
135
+ | 0.7621 | 2.1281 | 415000 | 0.7707 | 0.7987 |
136
+ | 0.7694 | 2.1538 | 420000 | 0.7700 | 0.7994 |
137
+ | 0.7648 | 2.1794 | 425000 | 0.7678 | 0.7995 |
138
+ | 0.7612 | 2.2050 | 430000 | 0.7673 | 0.7995 |
139
+ | 0.7627 | 2.2307 | 435000 | 0.7671 | 0.7997 |
140
+ | 0.766 | 2.2563 | 440000 | 0.7649 | 0.8003 |
141
+ | 0.7635 | 2.2820 | 445000 | 0.7653 | 0.8000 |
142
+ | 0.761 | 2.3076 | 450000 | 0.7647 | 0.8000 |
143
+ | 0.7649 | 2.3332 | 455000 | 0.7661 | 0.8001 |
144
+ | 0.7589 | 2.3589 | 460000 | 0.7630 | 0.8005 |
145
+ | 0.7586 | 2.3845 | 465000 | 0.7703 | 0.7988 |
146
+ | 0.7595 | 2.4102 | 470000 | 0.7640 | 0.8003 |
147
+ | 0.7622 | 2.4358 | 475000 | 0.7627 | 0.8005 |
148
+ | 0.7593 | 2.4614 | 480000 | 0.7605 | 0.8013 |
149
+ | 0.7558 | 2.4871 | 485000 | 0.7609 | 0.8012 |
150
+ | 0.7599 | 2.5127 | 490000 | 0.7651 | 0.8002 |
151
+ | 0.7587 | 2.5384 | 495000 | 0.7589 | 0.8016 |
152
+ | 0.7588 | 2.5640 | 500000 | 0.7570 | 0.8024 |
153
+ | 0.762 | 2.5896 | 505000 | 0.7566 | 0.8020 |
154
+ | 0.7526 | 2.6153 | 510000 | 0.7602 | 0.8013 |
155
+ | 0.7587 | 2.6409 | 515000 | 0.7560 | 0.8021 |
156
+ | 0.7522 | 2.6666 | 520000 | 0.7557 | 0.8026 |
157
+ | 0.7546 | 2.6922 | 525000 | 0.7542 | 0.8026 |
158
+ | 0.7542 | 2.7178 | 530000 | 0.7543 | 0.8029 |
159
+ | 0.7509 | 2.7435 | 535000 | 0.7542 | 0.8029 |
160
+ | 0.7515 | 2.7691 | 540000 | 0.7585 | 0.8016 |
161
+ | 0.7508 | 2.7948 | 545000 | 0.7553 | 0.8024 |
162
+ | 0.7523 | 2.8204 | 550000 | 0.7531 | 0.8028 |
163
+ | 0.756 | 2.8460 | 555000 | 0.7511 | 0.8035 |
164
+ | 0.7559 | 2.8717 | 560000 | 0.7500 | 0.8038 |
165
+ | 0.75 | 2.8973 | 565000 | 0.7494 | 0.8038 |
166
+ | 0.7492 | 2.9230 | 570000 | 0.7511 | 0.8035 |
167
+ | 0.7481 | 2.9486 | 575000 | 0.7471 | 0.8044 |
168
+ | 0.751 | 2.9742 | 580000 | 0.7478 | 0.8043 |
169
+ | 0.7545 | 2.9999 | 585000 | 0.7595 | 0.8019 |
170
+ | 0.7299 | 3.0255 | 590000 | 0.7478 | 0.8042 |
171
+ | 0.7305 | 3.0512 | 595000 | 0.7487 | 0.8047 |
172
+ | 0.7343 | 3.0768 | 600000 | 0.7466 | 0.8047 |
173
+ | 0.731 | 3.1024 | 605000 | 0.7472 | 0.8045 |
174
+ | 0.733 | 3.1281 | 610000 | 0.7460 | 0.8046 |
175
+ | 0.7351 | 3.1537 | 615000 | 0.7486 | 0.8043 |
176
+ | 0.7372 | 3.1794 | 620000 | 0.7446 | 0.8052 |
177
+ | 0.7299 | 3.2050 | 625000 | 0.7478 | 0.8045 |
178
+ | 0.7351 | 3.2306 | 630000 | 0.7458 | 0.8047 |
179
+ | 0.7304 | 3.2563 | 635000 | 0.7460 | 0.8049 |
180
+ | 0.7335 | 3.2819 | 640000 | 0.7451 | 0.8049 |
181
+ | 0.7351 | 3.3076 | 645000 | 0.7416 | 0.8058 |
182
+ | 0.7324 | 3.3332 | 650000 | 0.7420 | 0.8058 |
183
+ | 0.732 | 3.3588 | 655000 | 0.7426 | 0.8057 |
184
+ | 0.7286 | 3.3845 | 660000 | 0.7418 | 0.8062 |
185
+ | 0.7331 | 3.4101 | 665000 | 0.7420 | 0.8059 |
186
+ | 0.729 | 3.4358 | 670000 | 0.7402 | 0.8065 |
187
+ | 0.7336 | 3.4614 | 675000 | 0.7409 | 0.8063 |
188
+ | 0.7275 | 3.4870 | 680000 | 0.7398 | 0.8064 |
189
+ | 0.7298 | 3.5127 | 685000 | 0.7388 | 0.8069 |
190
+ | 0.724 | 3.5383 | 690000 | 0.7365 | 0.8070 |
191
+ | 0.7266 | 3.5640 | 695000 | 0.7373 | 0.8072 |
192
+ | 0.7282 | 3.5896 | 700000 | 0.7371 | 0.8074 |
193
+ | 0.7272 | 3.6152 | 705000 | 0.7360 | 0.8073 |
194
+ | 0.7227 | 3.6409 | 710000 | 0.7360 | 0.8072 |
195
+ | 0.7275 | 3.6665 | 715000 | 0.7358 | 0.8073 |
196
+ | 0.7299 | 3.6922 | 720000 | 0.7422 | 0.8063 |
197
+ | 0.7363 | 3.7178 | 725000 | 0.7361 | 0.8072 |
198
+ | 0.7274 | 3.7434 | 730000 | 0.7334 | 0.8082 |
199
+ | 0.7282 | 3.7691 | 735000 | 0.7347 | 0.8081 |
200
+ | 0.7239 | 3.7947 | 740000 | 0.7326 | 0.8085 |
201
+ | 0.7225 | 3.8204 | 745000 | 0.7352 | 0.8076 |
202
+ | 0.7242 | 3.8460 | 750000 | 0.7320 | 0.8086 |
203
+ | 0.7291 | 3.8716 | 755000 | 0.7317 | 0.8089 |
204
+ | 0.7292 | 3.8973 | 760000 | 0.7310 | 0.8087 |
205
+ | 0.7247 | 3.9229 | 765000 | 0.7310 | 0.8083 |
206
+ | 0.7286 | 3.9486 | 770000 | 0.7326 | 0.8084 |
207
+ | 0.7237 | 3.9742 | 775000 | 0.7303 | 0.8088 |
208
+ | 0.7187 | 3.9998 | 780000 | 0.7298 | 0.8090 |
209
+ | 0.7077 | 4.0255 | 785000 | 0.7316 | 0.8084 |
210
+ | 0.7108 | 4.0511 | 790000 | 0.7316 | 0.8084 |
211
+ | 0.7025 | 4.0768 | 795000 | 0.7300 | 0.8093 |
212
+ | 0.708 | 4.1024 | 800000 | 0.7295 | 0.8093 |
213
+ | 0.7067 | 4.1280 | 805000 | 0.7288 | 0.8094 |
214
+ | 0.7123 | 4.1537 | 810000 | 0.7287 | 0.8094 |
215
+ | 0.707 | 4.1793 | 815000 | 0.7283 | 0.8095 |
216
+ | 0.7033 | 4.2050 | 820000 | 0.7282 | 0.8099 |
217
+ | 0.7128 | 4.2306 | 825000 | 0.7272 | 0.8099 |
218
+ | 0.7053 | 4.2562 | 830000 | 0.7284 | 0.8095 |
219
+ | 0.7097 | 4.2819 | 835000 | 0.7268 | 0.8098 |
220
+ | 0.7101 | 4.3075 | 840000 | 0.7267 | 0.8097 |
221
+ | 0.7074 | 4.3332 | 845000 | 0.7261 | 0.8102 |
222
+ | 0.7034 | 4.3588 | 850000 | 0.7257 | 0.8101 |
223
+ | 0.7059 | 4.3844 | 855000 | 0.7262 | 0.8098 |
224
+ | 0.7008 | 4.4101 | 860000 | 0.7247 | 0.8100 |
225
+ | 0.7021 | 4.4357 | 865000 | 0.7241 | 0.8103 |
226
+ | 0.707 | 4.4614 | 870000 | 0.7243 | 0.8105 |
227
+ | 0.7034 | 4.4870 | 875000 | 0.7238 | 0.8106 |
228
+ | 0.7055 | 4.5126 | 880000 | 0.7233 | 0.8106 |
229
+ | 0.7056 | 4.5383 | 885000 | 0.7231 | 0.8107 |
230
+ | 0.7029 | 4.5639 | 890000 | 0.7226 | 0.8108 |
231
+ | 0.7048 | 4.5896 | 895000 | 0.7224 | 0.8111 |
232
+ | 0.7031 | 4.6152 | 900000 | 0.7221 | 0.8110 |
233
+ | 0.7034 | 4.6408 | 905000 | 0.7216 | 0.8112 |
234
+ | 0.7012 | 4.6665 | 910000 | 0.7218 | 0.8113 |
235
+ | 0.702 | 4.6921 | 915000 | 0.7209 | 0.8114 |
236
+ | 0.7018 | 4.7178 | 920000 | 0.7207 | 0.8115 |
237
+ | 0.7056 | 4.7434 | 925000 | 0.7201 | 0.8116 |
238
+ | 0.7005 | 4.7690 | 930000 | 0.7199 | 0.8118 |
239
+ | 0.7005 | 4.7947 | 935000 | 0.7197 | 0.8117 |
240
+ | 0.708 | 4.8203 | 940000 | 0.7189 | 0.8117 |
241
+ | 0.6956 | 4.8460 | 945000 | 0.7190 | 0.8118 |
242
+ | 0.7074 | 4.8716 | 950000 | 0.7185 | 0.8120 |
243
+ | 0.6964 | 4.8972 | 955000 | 0.7184 | 0.8121 |
244
+ | 0.7048 | 4.9229 | 960000 | 0.7188 | 0.8120 |
245
+ | 0.7018 | 4.9485 | 965000 | 0.7178 | 0.8122 |
246
+ | 0.7006 | 4.9742 | 970000 | 0.7177 | 0.8121 |
247
+ | 0.7005 | 4.9998 | 975000 | 0.7177 | 0.8121 |
248
+
249
+
250
  ### Framework versions
251
 
252
  - Transformers 4.40.0
all_results.json CHANGED
@@ -1,13 +1,13 @@
1
  {
2
  "epoch": 5.0,
3
- "eval_accuracy": 0.0031729411578062285,
4
- "eval_loss": 5.922416687011719,
5
- "eval_runtime": 38.6479,
6
- "eval_samples_per_second": 6523.813,
7
- "eval_steps_per_second": 25.486,
8
- "total_flos": 1.93274424e+18,
9
- "train_loss": 0.9357909288237652,
10
- "train_runtime": 45635.435,
11
- "train_samples_per_second": 493.038,
12
- "train_steps_per_second": 1.926
13
  }
 
1
  {
2
  "epoch": 5.0,
3
+ "eval_accuracy": 0.812062356349762,
4
+ "eval_loss": 0.7176774740219116,
5
+ "eval_runtime": 70.253,
6
+ "eval_samples_per_second": 7177.819,
7
+ "eval_steps_per_second": 28.042,
8
+ "total_flos": 2.144143543604609e+19,
9
+ "train_loss": 0.7742696757605321,
10
+ "train_runtime": 91371.0354,
11
+ "train_samples_per_second": 2731.829,
12
+ "train_steps_per_second": 10.671
13
  }
config.json CHANGED
@@ -1,13 +1,27 @@
1
  {
2
- "_name_or_path": "google/vit-base-patch16-224",
3
  "architectures": [
4
- "ViTForImageClassification"
5
  ],
6
- "attention_probs_dropout_prob": 0.0,
7
- "encoder_stride": 16,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.0,
10
- "hidden_size": 768,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  "id2label": {
12
  "0": "aircraft carrier",
13
  "1": "airplane",
@@ -357,7 +371,6 @@
357
  },
358
  "image_size": 64,
359
  "initializer_range": 0.02,
360
- "intermediate_size": 3072,
361
  "label2id": {
362
  "The Eiffel Tower": "309",
363
  "The Great Wall of China": "310",
@@ -705,14 +718,20 @@
705
  "zebra": "343",
706
  "zigzag": "344"
707
  },
708
- "layer_norm_eps": 1e-12,
709
- "model_type": "vit",
710
- "num_attention_heads": 12,
711
- "num_channels": 3,
712
- "num_hidden_layers": 12,
713
- "patch_size": 16,
 
 
 
 
 
714
  "problem_type": "single_label_classification",
715
- "qkv_bias": true,
716
  "torch_dtype": "float32",
717
- "transformers_version": "4.40.0"
 
718
  }
 
1
  {
2
+ "_name_or_path": "laszlokiss27/doodle-dash2",
3
  "architectures": [
4
+ "MobileViTV2ForImageClassification"
5
  ],
6
+ "aspp_dropout_prob": 0.1,
7
+ "aspp_out_channels": 512,
8
+ "atrous_rates": [
9
+ 6,
10
+ 12,
11
+ 18
12
+ ],
13
+ "attn_dropout": 0.0,
14
+ "base_attn_unit_dims": [
15
+ 128,
16
+ 192,
17
+ 256
18
+ ],
19
+ "classifier_dropout_prob": 0.1,
20
+ "conv_kernel_size": 3,
21
+ "expand_ratio": 2.0,
22
+ "ffn_dropout": 0.0,
23
+ "ffn_multiplier": 2,
24
+ "hidden_act": "swish",
25
  "id2label": {
26
  "0": "aircraft carrier",
27
  "1": "airplane",
 
371
  },
372
  "image_size": 64,
373
  "initializer_range": 0.02,
 
374
  "label2id": {
375
  "The Eiffel Tower": "309",
376
  "The Great Wall of China": "310",
 
718
  "zebra": "343",
719
  "zigzag": "344"
720
  },
721
+ "layer_norm_eps": 1e-05,
722
+ "mlp_ratio": 2.0,
723
+ "model_type": "mobilevitv2",
724
+ "n_attn_blocks": [
725
+ 2,
726
+ 4,
727
+ 3
728
+ ],
729
+ "num_channels": 1,
730
+ "output_stride": 32,
731
+ "patch_size": 2,
732
  "problem_type": "single_label_classification",
733
+ "semantic_loss_ignore_index": 255,
734
  "torch_dtype": "float32",
735
+ "transformers_version": "4.40.0",
736
+ "width_multiplier": 1.0
737
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:466b8deb639dc167164e924464795d79af909b39fc3bab5408a45ccfbf9c4a83
3
- size 343726100
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8cd6e374cfbf07883a1fcdf158c89f8afb511411ce78e49515298767c5f1eb1
3
+ size 18360744
preprocessor_config.json CHANGED
@@ -1,39 +1,32 @@
1
  {
2
  "_valid_processor_keys": [
3
  "images",
 
4
  "do_resize",
5
  "size",
6
  "resample",
7
  "do_rescale",
8
  "rescale_factor",
9
- "do_normalize",
10
- "image_mean",
11
- "image_std",
12
  "return_tensors",
13
  "data_format",
14
  "input_data_format"
15
  ],
16
- "crop_size": 64,
 
 
 
 
17
  "do_convert_rgb": false,
18
  "do_flip_channel_order": false,
19
- "do_normalize": true,
20
  "do_rescale": true,
21
  "do_resize": true,
22
- "image_mean": [
23
- 0.5,
24
- 0.5,
25
- 0.5
26
- ],
27
- "image_processor_type": "ViTImageProcessor",
28
- "image_std": [
29
- 0.5,
30
- 0.5,
31
- 0.5
32
- ],
33
  "resample": 2,
34
  "rescale_factor": 0.00392156862745098,
35
  "size": {
36
- "height": 64,
37
- "width": 64
38
  }
39
  }
 
1
  {
2
  "_valid_processor_keys": [
3
  "images",
4
+ "segmentation_maps",
5
  "do_resize",
6
  "size",
7
  "resample",
8
  "do_rescale",
9
  "rescale_factor",
10
+ "do_center_crop",
11
+ "crop_size",
12
+ "do_flip_channel_order",
13
  "return_tensors",
14
  "data_format",
15
  "input_data_format"
16
  ],
17
+ "crop_size": {
18
+ "height": 56,
19
+ "width": 56
20
+ },
21
+ "do_center_crop": true,
22
  "do_convert_rgb": false,
23
  "do_flip_channel_order": false,
 
24
  "do_rescale": true,
25
  "do_resize": true,
26
+ "image_processor_type": "MobileViTImageProcessor",
 
 
 
 
 
 
 
 
 
 
27
  "resample": 2,
28
  "rescale_factor": 0.00392156862745098,
29
  "size": {
30
+ "shortest_edge": 56
 
31
  }
32
  }
test_results.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
- "eval_accuracy": 0.0031729411578062285,
3
- "eval_loss": 5.922416687011719,
4
- "eval_runtime": 38.6479,
5
- "eval_samples_per_second": 6523.813,
6
- "eval_steps_per_second": 25.486
 
7
  }
 
1
  {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.812062356349762,
4
+ "eval_loss": 0.7176774740219116,
5
+ "eval_runtime": 70.253,
6
+ "eval_samples_per_second": 7177.819,
7
+ "eval_steps_per_second": 28.042
8
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 5.0,
3
- "total_flos": 1.93274424e+18,
4
- "train_loss": 0.9357909288237652,
5
- "train_runtime": 45635.435,
6
- "train_samples_per_second": 493.038,
7
- "train_steps_per_second": 1.926
8
  }
 
1
  {
2
  "epoch": 5.0,
3
+ "total_flos": 2.144143543604609e+19,
4
+ "train_loss": 0.7742696757605321,
5
+ "train_runtime": 91371.0354,
6
+ "train_samples_per_second": 2731.829,
7
+ "train_steps_per_second": 10.671
8
  }
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88516034144a29f1b5d5d89f98a08f9623f005aeb789cb1740d82493ef231f65
3
- size 4920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f609508b13695b195586e642a69c178b1e5acfb6990b785a955121afa8c6da9
3
+ size 4984