latticetower
commited on
Commit
·
614232f
1
Parent(s):
ac37587
add Lunar Lander model for HF rl course
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-Lander.zip +3 -0
- ppo-Lander/_stable_baselines3_version +1 -0
- ppo-Lander/data +94 -0
- ppo-Lander/policy.optimizer.pth +3 -0
- ppo-Lander/policy.pth +3 -0
- ppo-Lander/pytorch_variables.pth +3 -0
- ppo-Lander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicy
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 212.24 +/- 67.84
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **MlpPolicy** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bc60629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bc6062a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bc6062b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bc6062b90>", "_build": "<function ActorCriticPolicy._build at 0x7f9bc6062c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f9bc6062cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bc6062d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9bc6062dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bc6062e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bc6062ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bc6062f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9bc60a0f60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652125990.3748596, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA230j0f3Yy5rAidupeJMrNRcD054txBMwAAgD8AAIA/QAStPXvWq7oS5Y67ZolKNi0EhDqIBre1AACAPwAAgD8G9Ms+6/W2PRC+Pb0OG0A8eKWIPkq6ab0AAIA/AACAP5r8er0U1pS6Mf2hOUTUWTb/8B47hs+4uAAAgD8AAIA/AHnZvI8+broWAo660fCXtHt2T7pFBKE5AACAPwAAgD8m6O6+5w0CPyDICj7F4UG+cRuOvS3XwbwAAAAAAAAAAKYXYD6vIRA9BOMLO2s/Bjqme6M+U0ZnugAAgD8AAIA/pgCbPcM1dbjYkn66Iip0NOWIzLsgApg5AACAPwAAgD/NpAA+rXpKP4D5aD7Zg9e+ekMyPRX1SjwAAAAAAAAAAI0enT0UKJG6njQgOSYy1DNwodq6qEw4uAAAgD8AAIA/8wWSvVwfBDm2yPK6VxMRtuKIl7sc6g86AACAPwAAgD/m3Cs9SB7LPhbdUjwMA1++5iLfvP7M77sAAAAAAAAAAE3Dcz2F06257XBjO/poCrbZTWS78smEugAAgD8AAIA/JmeVPkpOPb3NZUa6JEAmOXUppr60E4g5AACAPwAAgD+ARUc+LBfoPELHKbtgN/a5GEGDPkBWfDoAAIA/AACAP7rPF76K6hc81rcyPc0T5DsYopC9kOBjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3h6EgHx5EECUhpRSlIwBbJRNBAGMAXSUR0CPjf+RYA80dX2UKGgGaAloD0MINZiG4SOKMUCUhpRSlGgVS/hoFkdAj5IWZRbbDnV9lChoBmgJaA9DCCmxa3u7JltAlIaUUpRoFU3oA2gWR0CPlXt1IRRNdX2UKGgGaAloD0MIqRH6mfoOYkCUhpRSlGgVTegDaBZHQI+YLt7a7Ep1fZQoaAZoCWgPQwgVPIVcKWpiQJSGlFKUaBVN6ANoFkdAj5lvwuuie3V9lChoBmgJaA9DCEnVdhN8s1tAlIaUUpRoFU3oA2gWR0CPneq4pc5bdX2UKGgGaAloD0MIBp/m5EVMYkCUhpRSlGgVTegDaBZHQI+gk29+PR11fZQoaAZoCWgPQwhPeXQjLOBJQJSGlFKUaBVN6ANoFkdAj7wFDfFaS3V9lChoBmgJaA9DCNY5BmQvHWBAlIaUUpRoFU3oA2gWR0CPyA9X9zfadX2UKGgGaAloD0MInMO12sNTZkCUhpRSlGgVTegDaBZHQI/RIiLVFx51fZQoaAZoCWgPQwip91RO+wVkQJSGlFKUaBVN6ANoFkdAj+EEGzKLbnV9lChoBmgJaA9DCGiSWFLu0WpAlIaUUpRoFU1eAmgWR0CP4uebutwKdX2UKGgGaAloD0MI5iDoaFUsXECUhpRSlGgVTegDaBZHQI/riPMjeKt1fZQoaAZoCWgPQwg66X3j61ViQJSGlFKUaBVN6ANoFkdAj/huymhufnV9lChoBmgJaA9DCBMsDmd+/VhAlIaUUpRoFU3oA2gWR0CP+Z5WzWwvdX2UKGgGaAloD0MIur4PBwnxX0CUhpRSlGgVTegDaBZHQJAAhFXq7iB1fZQoaAZoCWgPQwireCPzyBM/QJSGlFKUaBVNDgFoFkdAkAQ/CQ9zO3V9lChoBmgJaA9DCL+6KlCLqFdAlIaUUpRoFU3oA2gWR0CQbgz06HTJdX2UKGgGaAloD0MIp1g1CPNHYECUhpRSlGgVTegDaBZHQJBxHamGdqd1fZQoaAZoCWgPQwj/P06YMA9hQJSGlFKUaBVN6ANoFkdAkHLZRfnfVXV9lChoBmgJaA9DCDIge737GWFAlIaUUpRoFU3oA2gWR0CQdC7HyVfNdX2UKGgGaAloD0MI5QmEnWIUXkCUhpRSlGgVTegDaBZHQJB0xVaOgg51fZQoaAZoCWgPQwhw6ZjzjIxjQJSGlFKUaBVN6ANoFkdAkHbE/0NBnnV9lChoBmgJaA9DCPgb7bhhOGNAlIaUUpRoFU3oA2gWR0CQd/yRSxZ/dX2UKGgGaAloD0MIsW68OzImJkCUhpRSlGgVS9poFkdAkHrKUu+RHXV9lChoBmgJaA9DCEcgXtevRmBAlIaUUpRoFU3oA2gWR0CQg8JcPe54dX2UKGgGaAloD0MI4E237JD6ZkCUhpRSlGgVTVUBaBZHQJCHvvqkdmx1fZQoaAZoCWgPQwi0xwvpcKxiQJSGlFKUaBVN6ANoFkdAkIjmJm/WUnV9lChoBmgJaA9DCGg8EcR5U15AlIaUUpRoFU3oA2gWR0CQjOsrNGExdX2UKGgGaAloD0MI6Gor9heHY0CUhpRSlGgVTegDaBZHQJCU64iHIp91fZQoaAZoCWgPQwixGeCC7NxjQJSGlFKUaBVN6ANoFkdAkJkZAyEcsHV9lChoBmgJaA9DCOEmo8owV19AlIaUUpRoFU3oA2gWR0CQn48hLXcydX2UKGgGaAloD0MIEOhM2lTyX0CUhpRSlGgVTegDaBZHQJCgMkqtozx1fZQoaAZoCWgPQwjiHksfuh5jQJSGlFKUaBVN6ANoFkdAkKQrOE/SpnV9lChoBmgJaA9DCCr/Wl65HV5AlIaUUpRoFU3oA2gWR0CQqFLUTcqOdX2UKGgGaAloD0MIj+Gxn8VWNsCUhpRSlGgVTQIBaBZHQJCz35bhWHV1fZQoaAZoCWgPQwi6vDlcq9hfQJSGlFKUaBVN6ANoFkdAkLVXoPkJbHV9lChoBmgJaA9DCCLhe3+D5V9AlIaUUpRoFU3oA2gWR0CQt0e1KGtZdX2UKGgGaAloD0MIwARu3c1PYkCUhpRSlGgVTegDaBZHQJC5g5HVf/p1fZQoaAZoCWgPQwifd2NBYbJJQJSGlFKUaBVN6ANoFkdAkLwetKZlWnV9lChoBmgJaA9DCMAklSlmWWJAlIaUUpRoFU3oA2gWR0CQvZ1IRRMwdX2UKGgGaAloD0MIFeKReHmpYECUhpRSlGgVTegDaBZHQJDA+C2+fyx1fZQoaAZoCWgPQwgjERrBxvUdwJSGlFKUaBVL3GgWR0CQxzvd/J/5dX2UKGgGaAloD0MIIVhVL78ta0CUhpRSlGgVTTwBaBZHQJDJvSBshxJ1fZQoaAZoCWgPQwib6PNRRilgQJSGlFKUaBVN6ANoFkdAkMp8F2V3U3V9lChoBmgJaA9DCDj4wmSq/1hAlIaUUpRoFU3oA2gWR0CQzhcKgIyCdX2UKGgGaAloD0MI3SIw1reNZECUhpRSlGgVTegDaBZHQJDPFnyup0h1fZQoaAZoCWgPQwi2LjVCPzskQJSGlFKUaBVNTAFoFkdAkNBGXsw+MnV9lChoBmgJaA9DCPuxSX7E2mlAlIaUUpRoFU1LAWgWR0CQ0XCYkVvddX2UKGgGaAloD0MIvmn67AAhYUCUhpRSlGgVTegDaBZHQJDSFQN0/4Z1fZQoaAZoCWgPQwgA/ilVoixlQJSGlFKUaBVN6ANoFkdAkNf+lfqoqHV9lChoBmgJaA9DCBe5p6s78jRAlIaUUpRoFUvgaBZHQJDaL/cWTHN1fZQoaAZoCWgPQwg1Qj9Tr+5eQJSGlFKUaBVN6ANoFkdAkNtpq/M4cXV9lChoBmgJaA9DCMkAUMWNUyRAlIaUUpRoFUvnaBZHQJDfH/jsD4h1fZQoaAZoCWgPQwjO34RChOFkQJSGlFKUaBVN6ANoFkdAkOCED+zdDnV9lChoBmgJaA9DCKyt2F/2vmVAlIaUUpRoFU3oA2gWR0CQ5FsfJV81dX2UKGgGaAloD0MILpELzuDvH0CUhpRSlGgVS9FoFkdAkOS845tFa3V9lChoBmgJaA9DCBGpaRfThDVAlIaUUpRoFUu+aBZHQJDlwoDxLCh1fZQoaAZoCWgPQwh/orJhTWlnQJSGlFKUaBVN6ANoFkdAkOeN/axoqXV9lChoBmgJaA9DCJesinCTyTrAlIaUUpRoFUvNaBZHQJDnx1HOKO11fZQoaAZoCWgPQwi7KlCLQcpmQJSGlFKUaBVN9QFoFkdAkVAMniNsFnV9lChoBmgJaA9DCEuRfCWQdWNAlIaUUpRoFU3oA2gWR0CRUfPvrnkldX2UKGgGaAloD0MIe5+qQgPAW0CUhpRSlGgVTegDaBZHQJFUlt+Csfd1fZQoaAZoCWgPQwiDh2nf3Kc1QJSGlFKUaBVL3GgWR0CRXeNN8E3bdX2UKGgGaAloD0MIODC5UWQ1ZECUhpRSlGgVTegDaBZHQJFeH0NBnjB1fZQoaAZoCWgPQwihSPdzCsBdQJSGlFKUaBVN6ANoFkdAkWUpzLfUF3V9lChoBmgJaA9DCJQSglV1g2BAlIaUUpRoFU3oA2gWR0CRZ9zTWoWIdX2UKGgGaAloD0MIHEEqxQ6NYUCUhpRSlGgVTegDaBZHQJFopChN/ON1fZQoaAZoCWgPQwgIym37HgE2wJSGlFKUaBVLxGgWR0CRawTSsr/bdX2UKGgGaAloD0MIfo/665U2akCUhpRSlGgVTZQBaBZHQJFsOYsunMt1fZQoaAZoCWgPQwhHAaJgRiVhQJSGlFKUaBVN6ANoFkdAkW1XZ9NN8HV9lChoBmgJaA9DCPkRv2IN2VlAlIaUUpRoFU3oA2gWR0CRbpjT8YQ8dX2UKGgGaAloD0MICMvY0M0sQUCUhpRSlGgVS+9oFkdAkXOOtCAtnXV9lChoBmgJaA9DCBFTIonedWZAlIaUUpRoFU1JAWgWR0CRe7jGT9sKdX2UKGgGaAloD0MIdTqQ9VS3YUCUhpRSlGgVTegDaBZHQJF/DeVLSNR1fZQoaAZoCWgPQwhuGAXB46pgQJSGlFKUaBVN6ANoFkdAkYCgXyiEhHV9lChoBmgJaA9DCL1uERhrIWRAlIaUUpRoFU3oA2gWR0CRhMOVgQYldX2UKGgGaAloD0MI6bevA2d1YECUhpRSlGgVTegDaBZHQJGFLcWTHKh1fZQoaAZoCWgPQwgIAI49ey9gQJSGlFKUaBVN6ANoFkdAkYZG8qWkanV9lChoBmgJaA9DCJaX/E9+zmFAlIaUUpRoFU3oA2gWR0CRiCD8+A3DdX2UKGgGaAloD0MIeLgdGhbUXUCUhpRSlGgVTegDaBZHQJGIV/qgRK91fZQoaAZoCWgPQwiNDd3sD7QvwJSGlFKUaBVLzGgWR0CRjR8GcFyJdX2UKGgGaAloD0MI1QPmIdM3ZkCUhpRSlGgVTegDaBZHQJGT6HymQ8x1fZQoaAZoCWgPQwgDeXb5VjVpQJSGlFKUaBVNKQFoFkdAkZe+PBBRh3V9lChoBmgJaA9DCAzJycQtumxAlIaUUpRoFU08AWgWR0CRmmCfHxSYdX2UKGgGaAloD0MITb9EvPV0aUCUhpRSlGgVTfYCaBZHQJGcQqFyq+91fZQoaAZoCWgPQwjT25+Lhv9fQJSGlFKUaBVN6ANoFkdAkZ5boOhCdHV9lChoBmgJaA9DCDSitDd492BAlIaUUpRoFU3oA2gWR0CRqUZJTVDsdX2UKGgGaAloD0MI5J6u7lglZECUhpRSlGgVTegDaBZHQJGsAGD+R5l1fZQoaAZoCWgPQwjvqgfMQ4JkQJSGlFKUaBVN6ANoFkdAka6pMcp9Z3V9lChoBmgJaA9DCDKQZ5dvAmVAlIaUUpRoFU3oA2gWR0CRsA4y44IbdX2UKGgGaAloD0MIhLweTIppa0CUhpRSlGgVTT0BaBZHQJGz3GwRoRJ1fZQoaAZoCWgPQwgFxCRcyJJgQJSGlFKUaBVN6ANoFkdAkbVPXsgMdHV9lChoBmgJaA9DCMbCEDl9/TNAlIaUUpRoFUvIaBZHQJG3//Khcqx1fZQoaAZoCWgPQwh0llmE4o1kQJSGlFKUaBVN6ANoFkdAkbxQ2ETQFHV9lChoBmgJaA9DCFplprR+bWVAlIaUUpRoFU3oA2gWR0CRvuEE1VHXdX2UKGgGaAloD0MIYd14d2SuXUCUhpRSlGgVTegDaBZHQJHDcEOiFkB1fZQoaAZoCWgPQwiyD7IsmJtgQJSGlFKUaBVN6ANoFkdAkcae76Hj63V9lChoBmgJaA9DCI7KTdTSwmNAlIaUUpRoFU3oA2gWR0CRxtdeIEbHdX2UKGgGaAloD0MIPYBFfv2TYECUhpRSlGgVTegDaBZHQJHLhrP+n651ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-Lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:babcb0171890139cd4d9a80327cfe7a41f28c6d538f3fe875531a754cee78c47
|
3 |
+
size 144094
|
ppo-Lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-Lander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bc60629e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bc6062a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bc6062b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bc6062b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9bc6062c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9bc6062cb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bc6062d40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9bc6062dd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bc6062e60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bc6062ef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bc6062f80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9bc60a0f60>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652125990.3748596,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA230j0f3Yy5rAidupeJMrNRcD054txBMwAAgD8AAIA/QAStPXvWq7oS5Y67ZolKNi0EhDqIBre1AACAPwAAgD8G9Ms+6/W2PRC+Pb0OG0A8eKWIPkq6ab0AAIA/AACAP5r8er0U1pS6Mf2hOUTUWTb/8B47hs+4uAAAgD8AAIA/AHnZvI8+broWAo660fCXtHt2T7pFBKE5AACAPwAAgD8m6O6+5w0CPyDICj7F4UG+cRuOvS3XwbwAAAAAAAAAAKYXYD6vIRA9BOMLO2s/Bjqme6M+U0ZnugAAgD8AAIA/pgCbPcM1dbjYkn66Iip0NOWIzLsgApg5AACAPwAAgD/NpAA+rXpKP4D5aD7Zg9e+ekMyPRX1SjwAAAAAAAAAAI0enT0UKJG6njQgOSYy1DNwodq6qEw4uAAAgD8AAIA/8wWSvVwfBDm2yPK6VxMRtuKIl7sc6g86AACAPwAAgD/m3Cs9SB7LPhbdUjwMA1++5iLfvP7M77sAAAAAAAAAAE3Dcz2F06257XBjO/poCrbZTWS78smEugAAgD8AAIA/JmeVPkpOPb3NZUa6JEAmOXUppr60E4g5AACAPwAAgD+ARUc+LBfoPELHKbtgN/a5GEGDPkBWfDoAAIA/AACAP7rPF76K6hc81rcyPc0T5DsYopC9kOBjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3h6EgHx5EECUhpRSlIwBbJRNBAGMAXSUR0CPjf+RYA80dX2UKGgGaAloD0MINZiG4SOKMUCUhpRSlGgVS/hoFkdAj5IWZRbbDnV9lChoBmgJaA9DCCmxa3u7JltAlIaUUpRoFU3oA2gWR0CPlXt1IRRNdX2UKGgGaAloD0MIqRH6mfoOYkCUhpRSlGgVTegDaBZHQI+YLt7a7Ep1fZQoaAZoCWgPQwgVPIVcKWpiQJSGlFKUaBVN6ANoFkdAj5lvwuuie3V9lChoBmgJaA9DCEnVdhN8s1tAlIaUUpRoFU3oA2gWR0CPneq4pc5bdX2UKGgGaAloD0MIBp/m5EVMYkCUhpRSlGgVTegDaBZHQI+gk29+PR11fZQoaAZoCWgPQwhPeXQjLOBJQJSGlFKUaBVN6ANoFkdAj7wFDfFaS3V9lChoBmgJaA9DCNY5BmQvHWBAlIaUUpRoFU3oA2gWR0CPyA9X9zfadX2UKGgGaAloD0MInMO12sNTZkCUhpRSlGgVTegDaBZHQI/RIiLVFx51fZQoaAZoCWgPQwip91RO+wVkQJSGlFKUaBVN6ANoFkdAj+EEGzKLbnV9lChoBmgJaA9DCGiSWFLu0WpAlIaUUpRoFU1eAmgWR0CP4uebutwKdX2UKGgGaAloD0MI5iDoaFUsXECUhpRSlGgVTegDaBZHQI/riPMjeKt1fZQoaAZoCWgPQwg66X3j61ViQJSGlFKUaBVN6ANoFkdAj/huymhufnV9lChoBmgJaA9DCBMsDmd+/VhAlIaUUpRoFU3oA2gWR0CP+Z5WzWwvdX2UKGgGaAloD0MIur4PBwnxX0CUhpRSlGgVTegDaBZHQJAAhFXq7iB1fZQoaAZoCWgPQwireCPzyBM/QJSGlFKUaBVNDgFoFkdAkAQ/CQ9zO3V9lChoBmgJaA9DCL+6KlCLqFdAlIaUUpRoFU3oA2gWR0CQbgz06HTJdX2UKGgGaAloD0MIp1g1CPNHYECUhpRSlGgVTegDaBZHQJBxHamGdqd1fZQoaAZoCWgPQwj/P06YMA9hQJSGlFKUaBVN6ANoFkdAkHLZRfnfVXV9lChoBmgJaA9DCDIge737GWFAlIaUUpRoFU3oA2gWR0CQdC7HyVfNdX2UKGgGaAloD0MI5QmEnWIUXkCUhpRSlGgVTegDaBZHQJB0xVaOgg51fZQoaAZoCWgPQwhw6ZjzjIxjQJSGlFKUaBVN6ANoFkdAkHbE/0NBnnV9lChoBmgJaA9DCPgb7bhhOGNAlIaUUpRoFU3oA2gWR0CQd/yRSxZ/dX2UKGgGaAloD0MIsW68OzImJkCUhpRSlGgVS9poFkdAkHrKUu+RHXV9lChoBmgJaA9DCEcgXtevRmBAlIaUUpRoFU3oA2gWR0CQg8JcPe54dX2UKGgGaAloD0MI4E237JD6ZkCUhpRSlGgVTVUBaBZHQJCHvvqkdmx1fZQoaAZoCWgPQwi0xwvpcKxiQJSGlFKUaBVN6ANoFkdAkIjmJm/WUnV9lChoBmgJaA9DCGg8EcR5U15AlIaUUpRoFU3oA2gWR0CQjOsrNGExdX2UKGgGaAloD0MI6Gor9heHY0CUhpRSlGgVTegDaBZHQJCU64iHIp91fZQoaAZoCWgPQwixGeCC7NxjQJSGlFKUaBVN6ANoFkdAkJkZAyEcsHV9lChoBmgJaA9DCOEmo8owV19AlIaUUpRoFU3oA2gWR0CQn48hLXcydX2UKGgGaAloD0MIEOhM2lTyX0CUhpRSlGgVTegDaBZHQJCgMkqtozx1fZQoaAZoCWgPQwjiHksfuh5jQJSGlFKUaBVN6ANoFkdAkKQrOE/SpnV9lChoBmgJaA9DCCr/Wl65HV5AlIaUUpRoFU3oA2gWR0CQqFLUTcqOdX2UKGgGaAloD0MIj+Gxn8VWNsCUhpRSlGgVTQIBaBZHQJCz35bhWHV1fZQoaAZoCWgPQwi6vDlcq9hfQJSGlFKUaBVN6ANoFkdAkLVXoPkJbHV9lChoBmgJaA9DCCLhe3+D5V9AlIaUUpRoFU3oA2gWR0CQt0e1KGtZdX2UKGgGaAloD0MIwARu3c1PYkCUhpRSlGgVTegDaBZHQJC5g5HVf/p1fZQoaAZoCWgPQwifd2NBYbJJQJSGlFKUaBVN6ANoFkdAkLwetKZlWnV9lChoBmgJaA9DCMAklSlmWWJAlIaUUpRoFU3oA2gWR0CQvZ1IRRMwdX2UKGgGaAloD0MIFeKReHmpYECUhpRSlGgVTegDaBZHQJDA+C2+fyx1fZQoaAZoCWgPQwgjERrBxvUdwJSGlFKUaBVL3GgWR0CQxzvd/J/5dX2UKGgGaAloD0MIIVhVL78ta0CUhpRSlGgVTTwBaBZHQJDJvSBshxJ1fZQoaAZoCWgPQwib6PNRRilgQJSGlFKUaBVN6ANoFkdAkMp8F2V3U3V9lChoBmgJaA9DCDj4wmSq/1hAlIaUUpRoFU3oA2gWR0CQzhcKgIyCdX2UKGgGaAloD0MI3SIw1reNZECUhpRSlGgVTegDaBZHQJDPFnyup0h1fZQoaAZoCWgPQwi2LjVCPzskQJSGlFKUaBVNTAFoFkdAkNBGXsw+MnV9lChoBmgJaA9DCPuxSX7E2mlAlIaUUpRoFU1LAWgWR0CQ0XCYkVvddX2UKGgGaAloD0MIvmn67AAhYUCUhpRSlGgVTegDaBZHQJDSFQN0/4Z1fZQoaAZoCWgPQwgA/ilVoixlQJSGlFKUaBVN6ANoFkdAkNf+lfqoqHV9lChoBmgJaA9DCBe5p6s78jRAlIaUUpRoFUvgaBZHQJDaL/cWTHN1fZQoaAZoCWgPQwg1Qj9Tr+5eQJSGlFKUaBVN6ANoFkdAkNtpq/M4cXV9lChoBmgJaA9DCMkAUMWNUyRAlIaUUpRoFUvnaBZHQJDfH/jsD4h1fZQoaAZoCWgPQwjO34RChOFkQJSGlFKUaBVN6ANoFkdAkOCED+zdDnV9lChoBmgJaA9DCKyt2F/2vmVAlIaUUpRoFU3oA2gWR0CQ5FsfJV81dX2UKGgGaAloD0MILpELzuDvH0CUhpRSlGgVS9FoFkdAkOS845tFa3V9lChoBmgJaA9DCBGpaRfThDVAlIaUUpRoFUu+aBZHQJDlwoDxLCh1fZQoaAZoCWgPQwh/orJhTWlnQJSGlFKUaBVN6ANoFkdAkOeN/axoqXV9lChoBmgJaA9DCJesinCTyTrAlIaUUpRoFUvNaBZHQJDnx1HOKO11fZQoaAZoCWgPQwi7KlCLQcpmQJSGlFKUaBVN9QFoFkdAkVAMniNsFnV9lChoBmgJaA9DCEuRfCWQdWNAlIaUUpRoFU3oA2gWR0CRUfPvrnkldX2UKGgGaAloD0MIe5+qQgPAW0CUhpRSlGgVTegDaBZHQJFUlt+Csfd1fZQoaAZoCWgPQwiDh2nf3Kc1QJSGlFKUaBVL3GgWR0CRXeNN8E3bdX2UKGgGaAloD0MIODC5UWQ1ZECUhpRSlGgVTegDaBZHQJFeH0NBnjB1fZQoaAZoCWgPQwihSPdzCsBdQJSGlFKUaBVN6ANoFkdAkWUpzLfUF3V9lChoBmgJaA9DCJQSglV1g2BAlIaUUpRoFU3oA2gWR0CRZ9zTWoWIdX2UKGgGaAloD0MIHEEqxQ6NYUCUhpRSlGgVTegDaBZHQJFopChN/ON1fZQoaAZoCWgPQwgIym37HgE2wJSGlFKUaBVLxGgWR0CRawTSsr/bdX2UKGgGaAloD0MIfo/665U2akCUhpRSlGgVTZQBaBZHQJFsOYsunMt1fZQoaAZoCWgPQwhHAaJgRiVhQJSGlFKUaBVN6ANoFkdAkW1XZ9NN8HV9lChoBmgJaA9DCPkRv2IN2VlAlIaUUpRoFU3oA2gWR0CRbpjT8YQ8dX2UKGgGaAloD0MICMvY0M0sQUCUhpRSlGgVS+9oFkdAkXOOtCAtnXV9lChoBmgJaA9DCBFTIonedWZAlIaUUpRoFU1JAWgWR0CRe7jGT9sKdX2UKGgGaAloD0MIdTqQ9VS3YUCUhpRSlGgVTegDaBZHQJF/DeVLSNR1fZQoaAZoCWgPQwhuGAXB46pgQJSGlFKUaBVN6ANoFkdAkYCgXyiEhHV9lChoBmgJaA9DCL1uERhrIWRAlIaUUpRoFU3oA2gWR0CRhMOVgQYldX2UKGgGaAloD0MI6bevA2d1YECUhpRSlGgVTegDaBZHQJGFLcWTHKh1fZQoaAZoCWgPQwgIAI49ey9gQJSGlFKUaBVN6ANoFkdAkYZG8qWkanV9lChoBmgJaA9DCJaX/E9+zmFAlIaUUpRoFU3oA2gWR0CRiCD8+A3DdX2UKGgGaAloD0MIeLgdGhbUXUCUhpRSlGgVTegDaBZHQJGIV/qgRK91fZQoaAZoCWgPQwiNDd3sD7QvwJSGlFKUaBVLzGgWR0CRjR8GcFyJdX2UKGgGaAloD0MI1QPmIdM3ZkCUhpRSlGgVTegDaBZHQJGT6HymQ8x1fZQoaAZoCWgPQwgDeXb5VjVpQJSGlFKUaBVNKQFoFkdAkZe+PBBRh3V9lChoBmgJaA9DCAzJycQtumxAlIaUUpRoFU08AWgWR0CRmmCfHxSYdX2UKGgGaAloD0MITb9EvPV0aUCUhpRSlGgVTfYCaBZHQJGcQqFyq+91fZQoaAZoCWgPQwjT25+Lhv9fQJSGlFKUaBVN6ANoFkdAkZ5boOhCdHV9lChoBmgJaA9DCDSitDd492BAlIaUUpRoFU3oA2gWR0CRqUZJTVDsdX2UKGgGaAloD0MI5J6u7lglZECUhpRSlGgVTegDaBZHQJGsAGD+R5l1fZQoaAZoCWgPQwjvqgfMQ4JkQJSGlFKUaBVN6ANoFkdAka6pMcp9Z3V9lChoBmgJaA9DCDKQZ5dvAmVAlIaUUpRoFU3oA2gWR0CRsA4y44IbdX2UKGgGaAloD0MIhLweTIppa0CUhpRSlGgVTT0BaBZHQJGz3GwRoRJ1fZQoaAZoCWgPQwgFxCRcyJJgQJSGlFKUaBVN6ANoFkdAkbVPXsgMdHV9lChoBmgJaA9DCMbCEDl9/TNAlIaUUpRoFUvIaBZHQJG3//Khcqx1fZQoaAZoCWgPQwh0llmE4o1kQJSGlFKUaBVN6ANoFkdAkbxQ2ETQFHV9lChoBmgJaA9DCFplprR+bWVAlIaUUpRoFU3oA2gWR0CRvuEE1VHXdX2UKGgGaAloD0MIYd14d2SuXUCUhpRSlGgVTegDaBZHQJHDcEOiFkB1fZQoaAZoCWgPQwiyD7IsmJtgQJSGlFKUaBVN6ANoFkdAkcae76Hj63V9lChoBmgJaA9DCI7KTdTSwmNAlIaUUpRoFU3oA2gWR0CRxtdeIEbHdX2UKGgGaAloD0MIPYBFfv2TYECUhpRSlGgVTegDaBZHQJHLhrP+n651ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-Lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a58d29cad34b46e709bbc88137d0b64dec366a3eafc63a777cac4fc016c0e55d
|
3 |
+
size 84893
|
ppo-Lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:514f38a6020832a5b95ed2a0009386feaea936f3974b5b8b66e883c94d3d5da8
|
3 |
+
size 43201
|
ppo-Lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79b279bdc57f2f7cdc9b7b638b88ee8638fc537774fe32d77abab9771f8479c7
|
3 |
+
size 223116
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 212.23917720624485, "std_reward": 67.836917149985, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T20:10:45.786025"}
|