File size: 12,246 Bytes
d88461d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a8ff1
d88461d
 
 
 
 
35a8ff1
d88461d
 
 
 
35a8ff1
d88461d
 
 
35a8ff1
d88461d
 
4fcc398
d88461d
35a8ff1
d88461d
 
 
 
e1a6475
 
d88461d
 
 
 
 
 
 
35a8ff1
 
 
d88461d
 
 
 
 
35a8ff1
d88461d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a8ff1
 
 
d88461d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a8ff1
 
 
 
4fcc398
 
35a8ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
---
license: gpl-3.0
library_name: fasttext
tags:
- text-classification
- language-identification
metrics:
- f1
- precision
- recall
datasets:
- laurievb/OpenLID-v2
---

# OpenLID-v2

- **Developed by:** Laurie Burchell, Alexandra Birch, Nikolay Bogoychev, Kenneth Heafield
- **Model type:** Text classification (language identification)
- **Language(s) (NLP):** en
- **License:** gpl-3.0
- **Resources for more information:** [OpenLID paper](https://aclanthology.org/2023.acl-short.75/)

## Model description

OpenLID-v2 is a high-coverage, high-performance language identification model. It is an improved version of [OpenLID](https://huggingface.co/laurievb/OpenLID).

The original model and training data are described in [Burchell et al. (2023)](https://aclanthology.org/2023.acl-short.75/). The changes made to produce OpenLID-v2 are described in [the OpenLID-v2 dataset repo](https://huggingface.co/datasets/laurievb/OpenLID-v2).


### How to use

Here is how to use this model to detect the language of a given text. For best results, text should be cleaned and normalised with [openlid_normer.clean_line](https://huggingface.co/datasets/laurievb/OpenLID-v2/blob/main/scripts/tools/openlid_normer.py) prior to classification.

```python
>>> import fasttext
>>> from openlid_normer import clean_line
>>> from huggingface_hub import hf_hub_download

>>> model_path = hf_hub_download(repo_id="laurievb/OpenLID-v2", filename="model.bin")
>>> model = fasttext.load_model(model_path)
>>> input_text = clean_line("Hello, world!")
>>> model.predict(input_text)

(('__label__eng_Latn',), array([0.81148803]))

>>> # lower score for eng_Latn without cleaning
>>> model.predict("Hello, world!", k=5)  

(('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), 
 array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415]))
```

### Limitations and bias

The dataset and model cover 200 language varieties. However, some language varieties (e.g. Arabic dialects) are very hard to distinguish and in practice, it may only be possible to classify a input at the macrolanguage level.

The FLORES+ test set consists of sentences from a single domain (wiki articles), and so performance on this test set may not reflect how well our classifier works in other domains.

Our work aims to broaden NLP coverage by allowing practitioners to identify relevant data in more languages. However, we note that LID is inherently a normative activity that risks excluding minority dialects, scripts, or entire microlanguages from a macrolanguage. Choosing which languages to cover may reinforce power imbalances, as only some groups gain access to NLP technologies. In addition, errors in LID can have a significant impact on downstream performance, particularly (as is often the case) when a system is used as a ‘black box’. The performance of our classifier is not equal across languages which could lead to worse downstream performance for particular groups. We mitigate this by providing metrics by class.

## Training data

The model was trained on the [OpenLID-v2 dataset](https://huggingface.co/datasets/laurievb/OpenLID-v2). The data was normalised and classes were up/downsampled with temperature sampling prior to training; code to do this can be found [in the `scripts` directory](https://huggingface.co/datasets/laurievb/OpenLID-v2/blob/main/scripts/make_training_openlid.py) in the OpenLID-v2 dataset repository.

## Training procedure

The model was trained using fastText with the following hyperparameters set. All other hyperparameters were set to their default values.

* loss: softmax
* epochs: 2
* learning rate: 0.8
* minimum number of word occurances: 1000
* embedding dimension: 256
* character n-grams: 2-5
* word n-grams: 1
* bucket size: 1,000,000
* threads: 68


### Evaluation datasets

We evaluate the model using the [FLORES+ evaluation benchmark](https://huggingface.co/datasets/openlanguagedata/flores_plus), normalising text prior to classification with [openlid_normer.clean_line](https://huggingface.co/datasets/laurievb/OpenLID-v2/blob/main/scripts/tools/openlid_normer.py). Full results are available below.

The original OpenLID model was evaluated using the FLORES-200 benchmark provided by Costa-jussà et al. (2022), with further information available in the [OpenLID paper](https://aclanthology.org/2023.acl-short.75/). 

### BibTeX entry and citation info

#### ACL citation (preferred)

```
@inproceedings{burchell-etal-2023-open,
    title = "An Open Dataset and Model for Language Identification",
    author = "Burchell, Laurie  and
      Birch, Alexandra  and
      Bogoychev, Nikolay  and
      Heafield, Kenneth",
    editor = "Rogers, Anna  and
      Boyd-Graber, Jordan  and
      Okazaki, Naoaki",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-short.75",
    doi = "10.18653/v1/2023.acl-short.75",
    pages = "865--879",
    abstract = "Language identification (LID) is a fundamental step in many natural language processing pipelines. However, current LID systems are far from perfect, particularly on lower-resource languages. We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033{\%} across 201 languages, outperforming previous work. We achieve this by training on a curated dataset of monolingual data, which we audit manually to ensure reliability. We make both the model and the dataset available to the research community. Finally, we carry out detailed analysis into our model{'}s performance, both in comparison to existing open models and by language class.",
}
```

## Evaluation results

| Language code | Lines of data | F1 score |
|-|-:|-|
| ace_Arab | 6360 | 0.971029 |
| ace_Latn | 16845 | 0.998517 |
| acm_Arab | 5455 | 0.025121 |
| acq_Arab | 1831 | 0.001974 |
| aeb_Arab | 20541 | 0.488032 |
| afr_Latn | 1032866 | 0.999012 |
| als_Latn | 341372 | 1.0 |
| amh_Ethi | 810989 | 0.999506 |
| apc_Arab | 97293 | 0.386029 |
| arb_Arab | 7100646 | 0.33617 |
| ars_Arab | 25771 | 0.025373 |
| ary_Arab | 27376 | 0.579467 |
| arz_Arab | 69832 | 0.481471 |
| asm_Beng | 121242 | 1.0 |
| ast_Latn | 64998 | 0.991605 |
| awa_Deva | 8425 | 0.655352 |
| ayr_Latn | 140086 | 1.0 |
| azb_Arab | 10801 | 0.915957 |
| azj_Latn | 457599 | 0.998026 |
| bak_Cyrl | 63553 | 1.0 |
| bam_Latn | 9389 | 0.619494 |
| ban_Latn | 15202 | 0.977353 |
| bel_Cyrl | 83859 | 1.0 |
| bem_Latn | 378301 | 0.979612 |
| ben_Beng | 491942 | 0.996032 |
| bho_Deva | 53666 | 0.904134 |
| bjn_Arab | 6289 | 0.968215 |
| bjn_Latn | 20264 | 0.985665 |
| bod_Tibt | 2468 | 0.854072 |
| bos_Latn | 196005 | 0.69401 |
| bug_Latn | 7495 | 0.99504 |
| bul_Cyrl | 596120 | 1.0 |
| cat_Latn | 113745 | 0.99802 |
| ceb_Latn | 991957 | 0.998519 |
| ces_Latn | 424303 | 0.998026 |
| cjk_Latn | 35645 | 0.928159 |
| ckb_Arab | 24989 | 0.999506 |
| cmn_Hans | 1043000 | 0.986693 |
| cmn_Hant | 2011585 | 0.89396 |
| crh_Latn | 17398 | 0.992541 |
| cym_Latn | 97264 | 1.0 |
| dan_Latn | 2460965 | 0.989066 |
| deu_Latn | 652883 | 1.0 |
| dik_Latn | 25833 | 0.999011 |
| dyu_Latn | 16861 | 0.053309 |
| dzo_Tibt | 6903 | 0.886842 |
| ekk_Latn | 2984641 | 0.999506 |
| ell_Grek | 2977115 | 0.999506 |
| eng_Latn | 7514770 | 0.990206 |
| epo_Latn | 332895 | 0.999506 |
| eus_Latn | 613564 | 1.0 |
| ewe_Latn | 578181 | 0.998028 |
| fao_Latn | 38378 | 0.997036 |
| fij_Latn | 355285 | 1.0 |
| fil_Latn | 1178464 | 0.999013 |
| fin_Latn | 2299900 | 1.0 |
| fon_Latn | 30895 | 0.99802 |
| fra_Latn | 586064 | 0.99703 |
| fur_Latn | 53980 | 0.999506 |
| fuv_Latn | 13921 | 0.98191 |
| gaz_Latn | 331430 | 1.0 |
| gla_Latn | 49218 | 0.999506 |
| gle_Latn | 195791 | 1.0 |
| glg_Latn | 41582 | 0.994557 |
| gug_Latn | 78880 | 0.99852 |
| guj_Gujr | 834918 | 1.0 |
| hat_Latn | 294042 | 0.992643 |
| hau_Latn | 340263 | 0.989247 |
| heb_Hebr | 987305 | 0.999506 |
| hin_Deva | 1071332 | 0.799519 |
| hne_Deva | 52536 | 0.927026 |
| hrv_Latn | 785563 | 0.741921 |
| hun_Latn | 2559216 | 0.999506 |
| hye_Armn | 357578 | 1.0 |
| ibo_Latn | 484363 | 0.999013 |
| ilo_Latn | 966361 | 0.995573 |
| ind_Latn | 1682898 | 0.925908 |
| isl_Latn | 43332 | 0.998519 |
| ita_Latn | 478358 | 0.995547 |
| jav_Latn | 64377 | 0.988235 |
| jpn_Jpan | 886638 | 0.99852 |
| kab_Latn | 50772 | 0.829508 |
| kac_Latn | 11156 | 1.0 |
| kam_Latn | 51265 | 0.866741 |
| kan_Knda | 355427 | 1.0 |
| kas_Arab | 6225 | 0.979324 |
| kas_Deva | 6738 | 0.968925 |
| kat_Geor | 412072 | 1.0 |
| kaz_Cyrl | 50643 | 0.999506 |
| kbp_Latn | 52382 | 1.0 |
| kea_Latn | 5505 | 0.965764 |
| khk_Cyrl | 166505 | 1.0 |
| khm_Khmr | 75713 | 0.999506 |
| kik_Latn | 94116 | 0.963281 |
| kin_Latn | 439856 | 0.799766 |
| kir_Cyrl | 366840 | 1.0 |
| kmb_Latn | 90314 | 0.95809 |
| kmr_Latn | 15084 | 0.997041 |
| knc_Arab | 6337 | 0.702564 |
| knc_Latn | 6254 | 0.998516 |
| kor_Hang | 350945 | 1.0 |
| ktu_Latn | 206325 | 0.985352 |
| lao_Laoo | 24712 | 1.0 |
| lij_Latn | 27454 | 0.997531 |
| lim_Latn | 47490 | 0.994563 |
| lin_Latn | 538130 | 0.997041 |
| lit_Latn | 2360462 | 0.999506 |
| lmo_Latn | 33288 | 0.99505 |
| ltg_Latn | 14203 | 0.997033 |
| ltz_Latn | 36810 | 0.999506 |
| lua_Latn | 288714 | 0.996536 |
| lug_Latn | 245216 | 0.995569 |
| luo_Latn | 134777 | 0.998517 |
| lus_Latn | 191617 | 0.99802 |
| lvs_Latn | 2533501 | 0.997531 |
| mag_Deva | 6330 | 0.966281 |
| mai_Deva | 33093 | 0.988574 |
| mal_Mlym | 378020 | 1.0 |
| mar_Deva | 1006184 | 0.997536 |
| min_Latn | 31047 | 0.995547 |
| mkd_Cyrl | 393081 | 0.999506 |
| mlt_Latn | 2011002 | 0.996063 |
| mni_Beng | 47076 | 0.996063 |
| mos_Latn | 193219 | 0.976227 |
| mri_Latn | 47736 | 0.999506 |
| mya_Mymr | 547113 | 1.0 |
| nld_Latn | 2609642 | 0.994573 |
| nno_Latn | 98176 | 0.980779 |
| nob_Latn | 1749713 | 0.971935 |
| npi_Deva | 229595 | 0.995069 |
| nso_Latn | 552404 | 0.989237 |
| nus_Latn | 6294 | 1.0 |
| nya_Latn | 780066 | 0.994106 |
| oci_Latn | 239737 | 0.997289 |
| ory_Orya | 92475 | 1.0 |
| pag_Latn | 287179 | 0.998024 |
| pan_Guru | 354236 | 1.0 |
| pap_Latn | 397355 | 0.978703 |
| pbt_Arab | 276372 | 0.997041 |
| pes_Arab | 2810268 | 0.662182 |
| plt_Latn | 47052 | 1.0 |
| pol_Latn | 3035767 | 0.996553 |
| por_Latn | 3623950 | 0.992134 |
| prs_Arab | 31038 | 0.577474 |
| quy_Latn | 152002 | 1.0 |
| ron_Latn | 436311 | 0.998028 |
| run_Latn | 454887 | 0.850575 |
| rus_Cyrl | 6688484 | 1.0 |
| sag_Latn | 251562 | 0.999506 |
| san_Deva | 46056 | 0.990524 |
| sat_Olck | 29033 | 1.0 |
| scn_Latn | 39233 | 0.996059 |
| shn_Mymr | 22187 | 1.0 |
| sin_Sinh | 423966 | 1.0 |
| slk_Latn | 2815971 | 0.999012 |
| slv_Latn | 2684050 | 0.997044 |
| smo_Latn | 361969 | 0.998519 |
| sna_Latn | 754901 | 0.995084 |
| snd_Arab | 47901 | 0.998026 |
| som_Latn | 187966 | 0.998028 |
| sot_Latn | 1941 | 0.963115 |
| spa_Latn | 676635 | 0.993083 |
| srd_Latn | 46037 | 0.997531 |
| srp_Cyrl | 308075 | 0.999506 |
| ssw_Latn | 112237 | 0.989537 |
| sun_Latn | 46337 | 0.993076 |
| swe_Latn | 2429547 | 1.0 |
| swh_Latn | 226377 | 0.92972 |
| szl_Latn | 32177 | 0.996533 |
| tam_Taml | 550090 | 1.0 |
| taq_Latn | 10262 | 0.731371 |
| taq_Tfng | 6290 | 0.959677 |
| tat_Cyrl | 253516 | 1.0 |
| tel_Telu | 276262 | 1.0 |
| tgk_Cyrl | 131708 | 1.0 |
| tha_Thai | 728313 | 1.0 |
| tir_Ethi | 473470 | 0.999506 |
| tpi_Latn | 457544 | 0.999011 |
| tsn_Latn | 775066 | 0.974458 |
| tso_Latn | 747226 | 0.9941 |
| tuk_Latn | 157610 | 1.0 |
| tum_Latn | 233136 | 0.994584 |
| tur_Latn | 598819 | 0.992636 |
| twi_Latn | 538421 | 0.998516 |
| uig_Arab | 81940 | 1.0 |
| ukr_Cyrl | 1123812 | 1.0 |
| umb_Latn | 215640 | 0.983655 |
| urd_Arab | 487265 | 0.98062 |
| uzn_Latn | 1463925 | 0.99852 |
| vec_Latn | 41746 | 0.995074 |
| vie_Latn | 864979 | 0.999506 |
| war_Latn | 278265 | 1.0 |
| wol_Latn | 26985 | 0.996047 |
| xho_Latn | 907281 | 0.985309 |
| ydd_Hebr | 923 | 0.999506 |
| yor_Latn | 524493 | 0.996553 |
| yue_Hant | 59348 | 0.874099 |
| zgh_Tfng | 9485 | 0.96124 |
| zsm_Latn | 401337 | 0.954902 |
| zul_Latn | 941301 | 0.970106 |