--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: edos-2023-baseline-albert-base-v2-label_vector results: [] --- # edos-2023-baseline-albert-base-v2-label_vector This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8972 - F1: 0.4508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0897 | 1.18 | 100 | 1.8602 | 0.1447 | | 1.766 | 2.35 | 200 | 1.5934 | 0.2428 | | 1.5647 | 3.53 | 300 | 1.4075 | 0.2847 | | 1.3879 | 4.71 | 400 | 1.2719 | 0.3176 | | 1.2584 | 5.88 | 500 | 1.1372 | 0.3672 | | 1.1227 | 7.06 | 600 | 1.0391 | 0.4094 | | 1.018 | 8.24 | 700 | 0.9516 | 0.4273 | | 0.9416 | 9.41 | 800 | 0.8972 | 0.4508 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2