update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- F1: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -43,21 +43,21 @@ The following hyperparameters were used during training:
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 5
|
46 |
-
- num_epochs:
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
-
| 2.
|
54 |
-
| 1.
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
|
|
60 |
-
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.6113
|
20 |
+
- F1: 0.2785
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 5
|
46 |
+
- num_epochs: 12
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 2.0125 | 1.18 | 100 | 1.8290 | 0.1089 |
|
54 |
+
| 1.6698 | 2.35 | 200 | 1.6458 | 0.2223 |
|
55 |
+
| 1.4812 | 3.53 | 300 | 1.6035 | 0.2463 |
|
56 |
+
| 1.3137 | 4.71 | 400 | 1.5729 | 0.2502 |
|
57 |
+
| 1.2143 | 5.88 | 500 | 1.5549 | 0.2697 |
|
58 |
+
| 1.0805 | 7.06 | 600 | 1.5553 | 0.2759 |
|
59 |
+
| 0.9838 | 8.24 | 700 | 1.5730 | 0.2879 |
|
60 |
+
| 0.8981 | 9.41 | 800 | 1.6113 | 0.2785 |
|
61 |
|
62 |
|
63 |
### Framework versions
|