--- license: mit tags: - generated_from_trainer metrics: - f1 base_model: microsoft/deberta-v3-base model-index: - name: edos-2023-baseline-microsoft-deberta-v3-base-label_vector results: [] --- # edos-2023-baseline-microsoft-deberta-v3-base-label_vector This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5524 - F1: 0.3162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1209 | 1.18 | 100 | 1.9990 | 0.0801 | | 1.7997 | 2.35 | 200 | 1.7293 | 0.1349 | | 1.5749 | 3.53 | 300 | 1.6080 | 0.2431 | | 1.3674 | 4.71 | 400 | 1.5411 | 0.2793 | | 1.2214 | 5.88 | 500 | 1.5285 | 0.2980 | | 1.0752 | 7.06 | 600 | 1.5165 | 0.3054 | | 0.9899 | 8.24 | 700 | 1.5210 | 0.3186 | | 0.8733 | 9.41 | 800 | 1.5385 | 0.3134 | | 0.8578 | 10.59 | 900 | 1.5524 | 0.3162 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2