update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: edos-2023-baseline-roberta-base-label_sexist
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# edos-2023-baseline-roberta-base-label_sexist
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0182
|
20 |
+
- F1: 0.9951
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 1e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 5
|
46 |
+
- num_epochs: 10
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 0.5623 | 0.29 | 100 | 0.4459 | 0.6857 |
|
54 |
+
| 0.4055 | 0.57 | 200 | 0.3119 | 0.8135 |
|
55 |
+
| 0.3455 | 0.86 | 300 | 0.2704 | 0.8430 |
|
56 |
+
| 0.3198 | 1.14 | 400 | 0.2431 | 0.8640 |
|
57 |
+
| 0.2817 | 1.43 | 500 | 0.2579 | 0.8650 |
|
58 |
+
| 0.2997 | 1.71 | 600 | 0.2089 | 0.8911 |
|
59 |
+
| 0.2784 | 2.0 | 700 | 0.2069 | 0.8818 |
|
60 |
+
| 0.2231 | 2.29 | 800 | 0.2233 | 0.8872 |
|
61 |
+
| 0.2261 | 2.57 | 900 | 0.1598 | 0.9215 |
|
62 |
+
| 0.238 | 2.86 | 1000 | 0.1524 | 0.9137 |
|
63 |
+
| 0.2014 | 3.14 | 1100 | 0.1155 | 0.9441 |
|
64 |
+
| 0.1669 | 3.43 | 1200 | 0.1203 | 0.9436 |
|
65 |
+
| 0.1691 | 3.71 | 1300 | 0.0957 | 0.9566 |
|
66 |
+
| 0.1787 | 4.0 | 1400 | 0.0763 | 0.9709 |
|
67 |
+
| 0.1277 | 4.29 | 1500 | 0.0696 | 0.9717 |
|
68 |
+
| 0.1359 | 4.57 | 1600 | 0.0654 | 0.9734 |
|
69 |
+
| 0.1138 | 4.86 | 1700 | 0.0542 | 0.9788 |
|
70 |
+
| 0.1057 | 5.14 | 1800 | 0.0587 | 0.9747 |
|
71 |
+
| 0.1055 | 5.43 | 1900 | 0.0420 | 0.9843 |
|
72 |
+
| 0.0908 | 5.71 | 2000 | 0.0386 | 0.9866 |
|
73 |
+
| 0.1094 | 6.0 | 2100 | 0.0328 | 0.9890 |
|
74 |
+
| 0.0845 | 6.29 | 2200 | 0.0320 | 0.9885 |
|
75 |
+
| 0.0697 | 6.57 | 2300 | 0.0322 | 0.9893 |
|
76 |
+
| 0.083 | 6.86 | 2400 | 0.0260 | 0.9912 |
|
77 |
+
| 0.0659 | 7.14 | 2500 | 0.0259 | 0.9923 |
|
78 |
+
| 0.0745 | 7.43 | 2600 | 0.0304 | 0.9900 |
|
79 |
+
| 0.0623 | 7.71 | 2700 | 0.0284 | 0.9912 |
|
80 |
+
| 0.0825 | 8.0 | 2800 | 0.0215 | 0.9933 |
|
81 |
+
| 0.0414 | 8.29 | 2900 | 0.0222 | 0.9939 |
|
82 |
+
| 0.0477 | 8.57 | 3000 | 0.0231 | 0.9940 |
|
83 |
+
| 0.0606 | 8.86 | 3100 | 0.0211 | 0.9937 |
|
84 |
+
| 0.0616 | 9.14 | 3200 | 0.0190 | 0.9947 |
|
85 |
+
| 0.0413 | 9.43 | 3300 | 0.0182 | 0.9950 |
|
86 |
+
| 0.0462 | 9.71 | 3400 | 0.0181 | 0.9949 |
|
87 |
+
| 0.0473 | 10.0 | 3500 | 0.0182 | 0.9951 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.24.0
|
93 |
+
- Pytorch 1.12.1+cu113
|
94 |
+
- Datasets 2.7.1
|
95 |
+
- Tokenizers 0.13.2
|