k4black commited on
Commit
37835c2
1 Parent(s): 2c959e7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: edos-2023-baseline-roberta-base-label_sexist
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # edos-2023-baseline-roberta-base-label_sexist
16
+
17
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0182
20
+ - F1: 0.9951
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 5
46
+ - num_epochs: 10
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 0.5623 | 0.29 | 100 | 0.4459 | 0.6857 |
54
+ | 0.4055 | 0.57 | 200 | 0.3119 | 0.8135 |
55
+ | 0.3455 | 0.86 | 300 | 0.2704 | 0.8430 |
56
+ | 0.3198 | 1.14 | 400 | 0.2431 | 0.8640 |
57
+ | 0.2817 | 1.43 | 500 | 0.2579 | 0.8650 |
58
+ | 0.2997 | 1.71 | 600 | 0.2089 | 0.8911 |
59
+ | 0.2784 | 2.0 | 700 | 0.2069 | 0.8818 |
60
+ | 0.2231 | 2.29 | 800 | 0.2233 | 0.8872 |
61
+ | 0.2261 | 2.57 | 900 | 0.1598 | 0.9215 |
62
+ | 0.238 | 2.86 | 1000 | 0.1524 | 0.9137 |
63
+ | 0.2014 | 3.14 | 1100 | 0.1155 | 0.9441 |
64
+ | 0.1669 | 3.43 | 1200 | 0.1203 | 0.9436 |
65
+ | 0.1691 | 3.71 | 1300 | 0.0957 | 0.9566 |
66
+ | 0.1787 | 4.0 | 1400 | 0.0763 | 0.9709 |
67
+ | 0.1277 | 4.29 | 1500 | 0.0696 | 0.9717 |
68
+ | 0.1359 | 4.57 | 1600 | 0.0654 | 0.9734 |
69
+ | 0.1138 | 4.86 | 1700 | 0.0542 | 0.9788 |
70
+ | 0.1057 | 5.14 | 1800 | 0.0587 | 0.9747 |
71
+ | 0.1055 | 5.43 | 1900 | 0.0420 | 0.9843 |
72
+ | 0.0908 | 5.71 | 2000 | 0.0386 | 0.9866 |
73
+ | 0.1094 | 6.0 | 2100 | 0.0328 | 0.9890 |
74
+ | 0.0845 | 6.29 | 2200 | 0.0320 | 0.9885 |
75
+ | 0.0697 | 6.57 | 2300 | 0.0322 | 0.9893 |
76
+ | 0.083 | 6.86 | 2400 | 0.0260 | 0.9912 |
77
+ | 0.0659 | 7.14 | 2500 | 0.0259 | 0.9923 |
78
+ | 0.0745 | 7.43 | 2600 | 0.0304 | 0.9900 |
79
+ | 0.0623 | 7.71 | 2700 | 0.0284 | 0.9912 |
80
+ | 0.0825 | 8.0 | 2800 | 0.0215 | 0.9933 |
81
+ | 0.0414 | 8.29 | 2900 | 0.0222 | 0.9939 |
82
+ | 0.0477 | 8.57 | 3000 | 0.0231 | 0.9940 |
83
+ | 0.0606 | 8.86 | 3100 | 0.0211 | 0.9937 |
84
+ | 0.0616 | 9.14 | 3200 | 0.0190 | 0.9947 |
85
+ | 0.0413 | 9.43 | 3300 | 0.0182 | 0.9950 |
86
+ | 0.0462 | 9.71 | 3400 | 0.0181 | 0.9949 |
87
+ | 0.0473 | 10.0 | 3500 | 0.0182 | 0.9951 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.24.0
93
+ - Pytorch 1.12.1+cu113
94
+ - Datasets 2.7.1
95
+ - Tokenizers 0.13.2