update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- F1: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -37,8 +37,8 @@ More information needed
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 1e-05
|
40 |
-
- train_batch_size:
|
41 |
-
- eval_batch_size:
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
@@ -50,11 +50,14 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
-
| 1.
|
54 |
-
| 1.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4469
|
20 |
+
- F1: 0.8470
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 1e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 32
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 1.1983 | 1.18 | 100 | 1.1133 | 0.1623 |
|
54 |
+
| 1.0984 | 2.35 | 200 | 0.9809 | 0.2407 |
|
55 |
+
| 0.9901 | 3.53 | 300 | 0.8533 | 0.5465 |
|
56 |
+
| 0.8389 | 4.71 | 400 | 0.7101 | 0.6863 |
|
57 |
+
| 0.7889 | 5.88 | 500 | 0.5927 | 0.7696 |
|
58 |
+
| 0.6865 | 7.06 | 600 | 0.5303 | 0.8061 |
|
59 |
+
| 0.6364 | 8.24 | 700 | 0.4778 | 0.8278 |
|
60 |
+
| 0.5907 | 9.41 | 800 | 0.4469 | 0.8470 |
|
61 |
|
62 |
|
63 |
### Framework versions
|