--- license: mit tags: - generated_from_trainer metrics: - f1 base_model: xlm-roberta-base model-index: - name: edos-2023-baseline-xlm-roberta-base-label_category results: [] --- # edos-2023-baseline-xlm-roberta-base-label_category This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0636 - F1: 0.5250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2188 | 1.18 | 100 | 1.1325 | 0.1501 | | 1.0837 | 2.35 | 200 | 1.0649 | 0.2187 | | 0.9903 | 3.53 | 300 | 1.0039 | 0.4133 | | 0.8634 | 4.71 | 400 | 0.9906 | 0.4265 | | 0.812 | 5.88 | 500 | 1.0208 | 0.4634 | | 0.7195 | 7.06 | 600 | 1.0297 | 0.5146 | | 0.6659 | 8.24 | 700 | 1.0636 | 0.5250 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2