update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 1.
|
20 |
-
- F1: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -43,21 +43,23 @@ The following hyperparameters were used during training:
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 5
|
46 |
-
- num_epochs:
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
-
| 2.
|
54 |
-
| 1.
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 1.
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5797
|
20 |
+
- F1: 0.2746
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 5
|
46 |
+
- num_epochs: 12
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 2.1596 | 1.18 | 100 | 1.9772 | 0.0891 |
|
54 |
+
| 1.8651 | 2.35 | 200 | 1.7720 | 0.1159 |
|
55 |
+
| 1.6848 | 3.53 | 300 | 1.7193 | 0.1892 |
|
56 |
+
| 1.5532 | 4.71 | 400 | 1.6794 | 0.2191 |
|
57 |
+
| 1.466 | 5.88 | 500 | 1.6095 | 0.2419 |
|
58 |
+
| 1.3562 | 7.06 | 600 | 1.5771 | 0.2694 |
|
59 |
+
| 1.2909 | 8.24 | 700 | 1.5761 | 0.2707 |
|
60 |
+
| 1.2027 | 9.41 | 800 | 1.5747 | 0.2764 |
|
61 |
+
| 1.192 | 10.59 | 900 | 1.5893 | 0.2686 |
|
62 |
+
| 1.1256 | 11.76 | 1000 | 1.5797 | 0.2746 |
|
63 |
|
64 |
|
65 |
### Framework versions
|