k4black commited on
Commit
96baef4
·
1 Parent(s): 67bd921

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.1101
20
- - F1: 0.3846
21
 
22
  ## Model description
23
 
@@ -43,21 +43,23 @@ The following hyperparameters were used during training:
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_steps: 5
46
- - num_epochs: 10
47
  - mixed_precision_training: Native AMP
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | F1 |
52
  |:-------------:|:-----:|:----:|:---------------:|:------:|
53
- | 2.1158 | 1.18 | 100 | 1.8798 | 0.1060 |
54
- | 1.8474 | 2.35 | 200 | 1.6564 | 0.1666 |
55
- | 1.7147 | 3.53 | 300 | 1.5267 | 0.2450 |
56
- | 1.5738 | 4.71 | 400 | 1.4163 | 0.2523 |
57
- | 1.5035 | 5.88 | 500 | 1.2823 | 0.3144 |
58
- | 1.397 | 7.06 | 600 | 1.2035 | 0.3422 |
59
- | 1.3436 | 8.24 | 700 | 1.1409 | 0.3740 |
60
- | 1.2812 | 9.41 | 800 | 1.1101 | 0.3846 |
 
 
61
 
62
 
63
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 1.5797
20
+ - F1: 0.2746
21
 
22
  ## Model description
23
 
 
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_steps: 5
46
+ - num_epochs: 12
47
  - mixed_precision_training: Native AMP
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | F1 |
52
  |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 2.1596 | 1.18 | 100 | 1.9772 | 0.0891 |
54
+ | 1.8651 | 2.35 | 200 | 1.7720 | 0.1159 |
55
+ | 1.6848 | 3.53 | 300 | 1.7193 | 0.1892 |
56
+ | 1.5532 | 4.71 | 400 | 1.6794 | 0.2191 |
57
+ | 1.466 | 5.88 | 500 | 1.6095 | 0.2419 |
58
+ | 1.3562 | 7.06 | 600 | 1.5771 | 0.2694 |
59
+ | 1.2909 | 8.24 | 700 | 1.5761 | 0.2707 |
60
+ | 1.2027 | 9.41 | 800 | 1.5747 | 0.2764 |
61
+ | 1.192 | 10.59 | 900 | 1.5893 | 0.2686 |
62
+ | 1.1256 | 11.76 | 1000 | 1.5797 | 0.2746 |
63
 
64
 
65
  ### Framework versions