ldaquan1996's picture
Upload PPO LunarLander-v2 trained agent
c156d32
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bba4df1f0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bba4df280>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bba4df310>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bba4df3a0>",
"_build": "<function ActorCriticPolicy._build at 0x7f9bba4df430>",
"forward": "<function ActorCriticPolicy.forward at 0x7f9bba4df4c0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9bba4df550>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bba4df5e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f9bba4df670>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bba4df700>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bba4df790>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bba4df820>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f9bba4e01c0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1679315088110788520,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGBUJL6DIVq8Bo4fu4rqjrlGZNQ9R5GDOgAAgD8AAIA/Gg6KPeHK6bqOixs83JWEPO1vEjweoGa9AACAPwAAgD/aaNQ9SC2Kum5EO7kWNKy3f/11uzOUXjgAAIA/AACAP0AfOr7vr2c/28bVvnbOIr9AH3++prsPvgAAAAAAAAAAYFANPoE1tbyoVFO91RgfPQiMIL4zJvQ9AACAPwAAgD8zJwq8JKScPVP9LD1xjXC+9WenutbF8zwAAAAAAAAAAHouAj6s1y4/Th+XPfvRF78hTR0+VQdDvQAAAAAAAAAA5cWUvk2F3T56q5k+3pYav53N1r6EUo8+AAAAAAAAAABezJe+d3c5Pxdghr68Fwu/Uqm8vqeQzLwAAAAAAAAAADM1Ezyula66p7m4O+cpRjyKBGa7lSMwPQAAgD8AAIA/837BPSvHpT3K2g2+9XBcvq2SQr07k3o8AAAAAAAAAAAT6y++qVB/vE1FmrtfYgy6SuvbPaMT4joAAIA/AACAP3qsLL6DlVi8k8kxOpk7HDixscI9/V5iuQAAgD8AAIA/CPvVvmbDXz8nHoS+ykIpv628BL9WeDw9AAAAAAAAAABACre97PGpuUUhK7VN0bewHmIcux5PWjQAAIA/AACAP83Y5LzPmVk9hTvkPTygV77Wo++8c23muwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzt2ul2YdcECUhpRSlIwBbJRLvowBdJRHQJjty2b5M111fZQoaAZoCWgPQwi0OjlD8T9vQJSGlFKUaBVLqmgWR0CY7iPAwfyPdX2UKGgGaAloD0MIwR9+/nvBcECUhpRSlGgVS8NoFkdAmO6JZGKAKHV9lChoBmgJaA9DCNzUQPO5BnFAlIaUUpRoFUuoaBZHQJjuzGsFMZh1fZQoaAZoCWgPQwiZDwh0ZuFxQJSGlFKUaBVL4mgWR0CY7/vVmSQpdX2UKGgGaAloD0MI198SgH+Vc0CUhpRSlGgVS9BoFkdAmPB+uvECNnV9lChoBmgJaA9DCHSWWYSiSHFAlIaUUpRoFU0uAWgWR0CY8IyMUAT7dX2UKGgGaAloD0MI1zOEY9bwcECUhpRSlGgVS61oFkdAmPD/JeVs13V9lChoBmgJaA9DCIv/O6ICI3NAlIaUUpRoFUvwaBZHQJjxKOWBz3h1fZQoaAZoCWgPQwjnGJC9XjByQJSGlFKUaBVL1mgWR0CY8hcO9WZJdX2UKGgGaAloD0MIo1huabWCckCUhpRSlGgVS9VoFkdAmPI9XtBv73V9lChoBmgJaA9DCHHIBtJF7mVAlIaUUpRoFU3oA2gWR0CY8rlIEr5JdX2UKGgGaAloD0MIsfojDAMWbkCUhpRSlGgVS71oFkdAmPLfxc3VC3V9lChoBmgJaA9DCFSQn43cwm9AlIaUUpRoFUuyaBZHQJjzboFFDv51fZQoaAZoCWgPQwgK98q8VQZyQJSGlFKUaBVLzGgWR0CY89OPvKEGdX2UKGgGaAloD0MIDtqrj8cAc0CUhpRSlGgVTRQBaBZHQJj0KkM1CPZ1fZQoaAZoCWgPQwhW1GAahqJzQJSGlFKUaBVLymgWR0CY9UK/mDDkdX2UKGgGaAloD0MIcvp6vmY1SECUhpRSlGgVS3JoFkdAmPZnwPRRdnV9lChoBmgJaA9DCAfTMHzEE3JAlIaUUpRoFUvCaBZHQJj2vCCSRr91fZQoaAZoCWgPQwgjFcYWQrhwQJSGlFKUaBVNAwFoFkdAmPcU5ZKWcHV9lChoBmgJaA9DCPYmhuSkx3BAlIaUUpRoFUu6aBZHQJj3PeZXuE51fZQoaAZoCWgPQwiaXfdWJGtvQJSGlFKUaBVLrmgWR0CY96h/y5I6dX2UKGgGaAloD0MIM4l6weeJcUCUhpRSlGgVS89oFkdAmPftOARTTHV9lChoBmgJaA9DCHu+Zrnssm9AlIaUUpRoFUvEaBZHQJj4RVMmF8J1fZQoaAZoCWgPQwgHlbiOcf1yQJSGlFKUaBVLzWgWR0CY+aABT4tZdX2UKGgGaAloD0MI/tR46aY+ckCUhpRSlGgVS9doFkdAmPrKguh9LHV9lChoBmgJaA9DCE91yM0w3XBAlIaUUpRoFUutaBZHQJj6y6lLvkR1fZQoaAZoCWgPQwiZ1qaxvZtxQJSGlFKUaBVL52gWR0CY+6cE/0NCdX2UKGgGaAloD0MI33AfuXWvcUCUhpRSlGgVS7VoFkdAmPxxV+7UX3V9lChoBmgJaA9DCDpZar1fI3JAlIaUUpRoFUveaBZHQJj8hM7EHdJ1fZQoaAZoCWgPQwhdpibBm0tzQJSGlFKUaBVL62gWR0CY/JBAfMfSdX2UKGgGaAloD0MIBn+/mK0Ac0CUhpRSlGgVS6loFkdAmP6BA4XGfnV9lChoBmgJaA9DCLgCCvV0L3NAlIaUUpRoFUvFaBZHQJj+rd0q6OJ1fZQoaAZoCWgPQwhFKowtxORxQJSGlFKUaBVL0mgWR0CY/t2hIvrXdX2UKGgGaAloD0MIG/Slt78ockCUhpRSlGgVS9hoFkdAmQAFnqVyFXV9lChoBmgJaA9DCCCYo8fvmXJAlIaUUpRoFUvDaBZHQJkAXu0CzTp1fZQoaAZoCWgPQwhbfAqA8fVwQJSGlFKUaBVL9GgWR0CZAR4REnb7dX2UKGgGaAloD0MIDFwea4a5c0CUhpRSlGgVS/poFkdAmQJszVMEinV9lChoBmgJaA9DCBx6i4d3C3FAlIaUUpRoFUvVaBZHQJkC2+lCTll1fZQoaAZoCWgPQwhXJvxS/31yQJSGlFKUaBVLm2gWR0CZAygk1MufdX2UKGgGaAloD0MIa7jIPV03cUCUhpRSlGgVS8JoFkdAmQMzBdld1XV9lChoBmgJaA9DCPkSKjj8pXFAlIaUUpRoFUvWaBZHQJkEBp35eqt1fZQoaAZoCWgPQwgfhetReO5wQJSGlFKUaBVLuWgWR0CZBHu3c580dX2UKGgGaAloD0MI/dgkP2KLcUCUhpRSlGgVS6poFkdAmQXNFfAsTXV9lChoBmgJaA9DCJzfMNHgJ3FAlIaUUpRoFUvwaBZHQJkF6mtQsPJ1fZQoaAZoCWgPQwhA+bt3VAtyQJSGlFKUaBVL42gWR0CZBjIMSbpedX2UKGgGaAloD0MInaG44435cECUhpRSlGgVS79oFkdAmQbYwdsBQ3V9lChoBmgJaA9DCJ6xL9n4125AlIaUUpRoFUu+aBZHQJkG/Mmnfl91fZQoaAZoCWgPQwipF3yaE1FwQJSGlFKUaBVLtGgWR0CZB6EPlMh6dX2UKGgGaAloD0MIfXbAdYW5cECUhpRSlGgVS8loFkdAmQgBUm2LHnV9lChoBmgJaA9DCFJ+Uu1TGXBAlIaUUpRoFUuxaBZHQJkIAduHerN1fZQoaAZoCWgPQwiK5CuBlIZvQJSGlFKUaBVLtmgWR0CZCVm+0w8GdX2UKGgGaAloD0MIKEhsd48MYkCUhpRSlGgVTegDaBZHQJkJww9JSR91fZQoaAZoCWgPQwh9yjFZXMJvQJSGlFKUaBVLx2gWR0CZCdNfgJkYdX2UKGgGaAloD0MI38Mlxx1/bkCUhpRSlGgVS7toFkdAmQoKSkj5bnV9lChoBmgJaA9DCBAHCVH+aHJAlIaUUpRoFUveaBZHQJkKNhw2l2x1fZQoaAZoCWgPQwg9t9CVCNNkQJSGlFKUaBVN6ANoFkdAmQphpL26CnV9lChoBmgJaA9DCOrQ6Xm3IHNAlIaUUpRoFUvxaBZHQJkKbZ8KG+N1fZQoaAZoCWgPQwiEDOTZ5ddxQJSGlFKUaBVLn2gWR0CZCmhBZ6lddX2UKGgGaAloD0MIrU1jey10ckCUhpRSlGgVS8VoFkdAmQqG2Xsw+XV9lChoBmgJaA9DCKTfvg6cw3BAlIaUUpRoFUu9aBZHQJkLiK+BYmt1fZQoaAZoCWgPQwgsDJHT1+5xQJSGlFKUaBVL2WgWR0CZC67K7qY7dX2UKGgGaAloD0MIi+B/K9l5ckCUhpRSlGgVS9NoFkdAmQwzqSowVXV9lChoBmgJaA9DCGPshJdga29AlIaUUpRoFUu5aBZHQJkMfi3ocJd1fZQoaAZoCWgPQwg0EqER7KtyQJSGlFKUaBVNAQFoFkdAmQzTufEn9nV9lChoBmgJaA9DCH5TWKlgV3NAlIaUUpRoFUvraBZHQJkNqdK/VRV1fZQoaAZoCWgPQwgB+n3/ZmpxQJSGlFKUaBVLqGgWR0CZDbHBDXvqdX2UKGgGaAloD0MIhWBVvXwjc0CUhpRSlGgVS69oFkdAmQ3RDCxeLXV9lChoBmgJaA9DCESF6uaiH3FAlIaUUpRoFUvXaBZHQJkOcSrYGt91fZQoaAZoCWgPQwjKNnAHKttxQJSGlFKUaBVLr2gWR0CZDpgmqo60dX2UKGgGaAloD0MI+HE0R5b/ckCUhpRSlGgVS7VoFkdAmQ6Y2S+xnnV9lChoBmgJaA9DCOTYeoZwkG5AlIaUUpRoFUvCaBZHQJkO369CeEt1fZQoaAZoCWgPQwg34zRElQhzQJSGlFKUaBVLyWgWR0CZDxOCXhOydX2UKGgGaAloD0MIFEGch9MhckCUhpRSlGgVS+9oFkdAmQ+4cinpCHV9lChoBmgJaA9DCFiQZiyalXJAlIaUUpRoFU0iAWgWR0CZEMgm7aqTdX2UKGgGaAloD0MI2AxwQXZPcUCUhpRSlGgVS8VoFkdAmRDbj5sTFnV9lChoBmgJaA9DCGQjEK8rkHJAlIaUUpRoFUvKaBZHQJkRRgqmTDB1fZQoaAZoCWgPQwg5uHTM+RFwQJSGlFKUaBVLwGgWR0CZEV8ox59mdX2UKGgGaAloD0MIIJkOnZ6MckCUhpRSlGgVS/1oFkdAmRHAo9cKPXV9lChoBmgJaA9DCA4WTtJ87HFAlIaUUpRoFU0CAWgWR0CZEbiKziS8dX2UKGgGaAloD0MIZylZTkLycECUhpRSlGgVS7JoFkdAmRHkVzp5eXV9lChoBmgJaA9DCEI+6NlsFHJAlIaUUpRoFUvJaBZHQJkShjRUm2N1fZQoaAZoCWgPQwh/L4UHDSRyQJSGlFKUaBVL2GgWR0CZEr3vx6OYdX2UKGgGaAloD0MI/bypSIXQckCUhpRSlGgVS7xoFkdAmRL2VZ9uxnV9lChoBmgJaA9DCE5k5gIXcHBAlIaUUpRoFUvdaBZHQJkTljslb/x1fZQoaAZoCWgPQwjzyvW2WThyQJSGlFKUaBVLzWgWR0CZE6HKOktVdX2UKGgGaAloD0MI2AsFbMcNcUCUhpRSlGgVS8loFkdAmRO+G0u14XV9lChoBmgJaA9DCHptNlaiHXNAlIaUUpRoFU0AAWgWR0CZFHt3OfNBdX2UKGgGaAloD0MIVP1K58MFbkCUhpRSlGgVS6hoFkdAmRSxaTwDvHV9lChoBmgJaA9DCJ60cFlF1HJAlIaUUpRoFUv1aBZHQJkVYCq6vq11fZQoaAZoCWgPQwiIDRZO0upwQJSGlFKUaBVL0WgWR0CZFZDVH4GmdX2UKGgGaAloD0MIR5OLMbAxcUCUhpRSlGgVS8JoFkdAmRWs7lq8DnV9lChoBmgJaA9DCPhPN1DgMXFAlIaUUpRoFUu4aBZHQJkWCYw7DEZ1fZQoaAZoCWgPQwgogjgP59dxQJSGlFKUaBVL1WgWR0CZFoJ3xFy8dX2UKGgGaAloD0MIIhecwZ/gcECUhpRSlGgVS7toFkdAmRbD6rNnoXV9lChoBmgJaA9DCHtq9dWVUnNAlIaUUpRoFUvTaBZHQJkXmYBvJil1fZQoaAZoCWgPQwh8SPjenzZxQJSGlFKUaBVL0WgWR0CZF8SEDhcadX2UKGgGaAloD0MIlj/fFixCcECUhpRSlGgVS8BoFkdAmRgvHPu5SXV9lChoBmgJaA9DCEjElEgiWW9AlIaUUpRoFUvGaBZHQJkYNr6+FlF1fZQoaAZoCWgPQwhSnnk5bHJvQJSGlFKUaBVLqmgWR0CZGK6Ae7tidWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}