# !/usr/bin/env python # -*- coding:utf-8 -*- import os import time import jieba import jsonlines import codecs import random import fasttext stopwords_set = set() basedir = './stopwords/' # 停用词文件 with open(basedir + 'baidu_stopwords.txt', 'r', encoding='utf-8') as infile: for line in infile: stopwords_set.add(line.strip()) with open(basedir + 'cn_stopwords.txt', 'r', encoding='utf-8') as infile: for line in infile: stopwords_set.add(line.strip()) with open(basedir + 'hit_stopwords.txt', 'r', encoding='utf-8') as infile: for line in infile: stopwords_set.add(line.strip()) with open(basedir + 'scu_stopwords.txt', 'r', encoding='utf-8') as infile: for line in infile: stopwords_set.add(line.strip()) def segment(text): # 结巴分词 seg_text = jieba.cut(text.replace("\t", " ").replace("\n", " ")) outline = " ".join(seg_text) outline = " ".join(outline.split()) # 去停用词与HTML标签 outline_list = outline.split(" ") outline_list_filter = [item for item in outline_list if item not in stopwords_set] outline = " ".join(outline_list_filter) return outline def predict_score(preds): score_dict = { '__label__': 0, '__label__0': 0, '__label__1': 1, } score_list = [] for l, s in zip(*preds): score = 0 for _l, _s in zip(l, s): score += score_dict[_l] * _s score_list.append(float(score)) return score_list if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--fasttext-model-path', type=str, default="", help="file path", required=True) parser.add_argument('--input-file-path', type=str, default="", help="file path", required=True) parser.add_argument('--output-file-path', type=str, default="", help="file path", required=True) parser.add_argument('--text-key', type=str, default="text", help="file path", required=False) parser.add_argument('--output-key', type=str, default="score", help="file path", required=False) parser.add_argument('--do-score-filter', action='store_true', default=False, help='do score filter or not', dest='do_score_filter') parser.add_argument('--score-thres', type=float, default=0.1, help="score thres", required=False) args = parser.parse_args() model_dir = args.fasttext_model_path model = fasttext.load_model(model_dir) import jsonlines file_path = args.input_file_path output_file_path = args.output_file_path writer = jsonlines.open(output_file_path, mode='w') dir_path = None if os.path.isdir(file_path): dir_path = os.listdir(file_path) else: dir_path = [file_path] lines = 0 filtered = 0 start_time = time.time() for file_path in dir_path: input_file = os.path.join(args.input_file_path, file_path) with jsonlines.open(input_file) as reader: for line in reader: lines += 1 if lines % 1000 == 0: end_time = time.time() elapsed_time = end_time - start_time samples_per_second = lines / elapsed_time print(f"Processed {lines} lines in {elapsed_time:.2f} seconds.", flush=True) print(f"Samples per second: {samples_per_second:.2f}.", flush=True) if args.text_key not in line: filtered += 1 continue sentecnce = line[args.text_key] outline = segment(sentecnce) preds = model.predict([outline], k=-1) score = predict_score(preds) #print(preds, score) line[args.output_key] = score[0] # do filter if args.do_score_filter and line[args.output_key] < args.score_thres: filtered += 1 continue writer.write(line) end_time = time.time() elapsed_time = end_time - start_time samples_per_second = lines / elapsed_time print(f"Processed {lines} lines in {elapsed_time:.2f} seconds, Filtered {filtered} samples.", flush=True) print(f"Samples per second: {samples_per_second:.2f}.", flush=True)