Embeddings model v2
Browse files- README.md +91 -172
- config.json +1 -1
- config_sentence_transformers.json +4 -4
- model.safetensors +1 -1
- training_args.bin +3 -0
README.md
CHANGED
@@ -4,35 +4,35 @@ tags:
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
-
- dataset_size:
|
8 |
- loss:MultipleNegativesRankingLoss
|
9 |
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
widget:
|
11 |
-
- source_sentence:
|
12 |
-
sentences:
|
13 |
-
- risk & compliance
|
14 |
-
- internal communication
|
15 |
-
- accounting
|
16 |
-
- source_sentence: coord integracao do cliente ii
|
17 |
-
sentences:
|
18 |
-
- strategic planning
|
19 |
-
- customer experience
|
20 |
-
- não encontrado (adicione nas observações)
|
21 |
-
- source_sentence: gerente sr. marketing e performance
|
22 |
sentences:
|
|
|
23 |
- business operations
|
24 |
-
-
|
25 |
-
|
26 |
-
- source_sentence: gerente executivo de operacoes
|
27 |
sentences:
|
28 |
-
- business operations
|
29 |
-
- sdr
|
30 |
- product management
|
31 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
sentences:
|
33 |
-
-
|
34 |
-
-
|
35 |
-
-
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
metrics:
|
@@ -51,21 +51,6 @@ metrics:
|
|
51 |
- cosine_ndcg@10
|
52 |
- cosine_mrr@10
|
53 |
- cosine_map@100
|
54 |
-
- dot_accuracy@1
|
55 |
-
- dot_accuracy@3
|
56 |
-
- dot_accuracy@5
|
57 |
-
- dot_accuracy@10
|
58 |
-
- dot_precision@1
|
59 |
-
- dot_precision@3
|
60 |
-
- dot_precision@5
|
61 |
-
- dot_precision@10
|
62 |
-
- dot_recall@1
|
63 |
-
- dot_recall@3
|
64 |
-
- dot_recall@5
|
65 |
-
- dot_recall@10
|
66 |
-
- dot_ndcg@10
|
67 |
-
- dot_mrr@10
|
68 |
-
- dot_map@100
|
69 |
model-index:
|
70 |
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
71 |
results:
|
@@ -77,95 +62,50 @@ model-index:
|
|
77 |
type: unknown
|
78 |
metrics:
|
79 |
- type: cosine_accuracy@1
|
80 |
-
value: 0.
|
81 |
name: Cosine Accuracy@1
|
82 |
- type: cosine_accuracy@3
|
83 |
-
value: 0.
|
84 |
name: Cosine Accuracy@3
|
85 |
- type: cosine_accuracy@5
|
86 |
-
value: 0.
|
87 |
name: Cosine Accuracy@5
|
88 |
- type: cosine_accuracy@10
|
89 |
-
value: 0.
|
90 |
name: Cosine Accuracy@10
|
91 |
- type: cosine_precision@1
|
92 |
-
value: 0.
|
93 |
name: Cosine Precision@1
|
94 |
- type: cosine_precision@3
|
95 |
-
value: 0.
|
96 |
name: Cosine Precision@3
|
97 |
- type: cosine_precision@5
|
98 |
-
value: 0.
|
99 |
name: Cosine Precision@5
|
100 |
- type: cosine_precision@10
|
101 |
-
value: 0.
|
102 |
name: Cosine Precision@10
|
103 |
- type: cosine_recall@1
|
104 |
-
value: 0.
|
105 |
name: Cosine Recall@1
|
106 |
- type: cosine_recall@3
|
107 |
-
value: 0.
|
108 |
name: Cosine Recall@3
|
109 |
- type: cosine_recall@5
|
110 |
-
value: 0.
|
111 |
name: Cosine Recall@5
|
112 |
- type: cosine_recall@10
|
113 |
-
value: 0.
|
114 |
name: Cosine Recall@10
|
115 |
- type: cosine_ndcg@10
|
116 |
-
value: 0.
|
117 |
name: Cosine Ndcg@10
|
118 |
- type: cosine_mrr@10
|
119 |
-
value: 0.
|
120 |
name: Cosine Mrr@10
|
121 |
- type: cosine_map@100
|
122 |
-
value: 0.
|
123 |
name: Cosine Map@100
|
124 |
-
- type: dot_accuracy@1
|
125 |
-
value: 0.6245583038869258
|
126 |
-
name: Dot Accuracy@1
|
127 |
-
- type: dot_accuracy@3
|
128 |
-
value: 0.8206713780918727
|
129 |
-
name: Dot Accuracy@3
|
130 |
-
- type: dot_accuracy@5
|
131 |
-
value: 0.8754416961130742
|
132 |
-
name: Dot Accuracy@5
|
133 |
-
- type: dot_accuracy@10
|
134 |
-
value: 0.926678445229682
|
135 |
-
name: Dot Accuracy@10
|
136 |
-
- type: dot_precision@1
|
137 |
-
value: 0.6245583038869258
|
138 |
-
name: Dot Precision@1
|
139 |
-
- type: dot_precision@3
|
140 |
-
value: 0.2735571260306242
|
141 |
-
name: Dot Precision@3
|
142 |
-
- type: dot_precision@5
|
143 |
-
value: 0.17508833922261482
|
144 |
-
name: Dot Precision@5
|
145 |
-
- type: dot_precision@10
|
146 |
-
value: 0.0926678445229682
|
147 |
-
name: Dot Precision@10
|
148 |
-
- type: dot_recall@1
|
149 |
-
value: 0.6245583038869258
|
150 |
-
name: Dot Recall@1
|
151 |
-
- type: dot_recall@3
|
152 |
-
value: 0.8206713780918727
|
153 |
-
name: Dot Recall@3
|
154 |
-
- type: dot_recall@5
|
155 |
-
value: 0.8754416961130742
|
156 |
-
name: Dot Recall@5
|
157 |
-
- type: dot_recall@10
|
158 |
-
value: 0.926678445229682
|
159 |
-
name: Dot Recall@10
|
160 |
-
- type: dot_ndcg@10
|
161 |
-
value: 0.7790196193570564
|
162 |
-
name: Dot Ndcg@10
|
163 |
-
- type: dot_mrr@10
|
164 |
-
value: 0.7312496494475299
|
165 |
-
name: Dot Mrr@10
|
166 |
-
- type: dot_map@100
|
167 |
-
value: 0.7347864977321262
|
168 |
-
name: Dot Map@100
|
169 |
---
|
170 |
|
171 |
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
@@ -178,7 +118,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
178 |
- **Model Type:** Sentence Transformer
|
179 |
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
|
180 |
- **Maximum Sequence Length:** 384 tokens
|
181 |
-
- **Output Dimensionality:** 768
|
182 |
- **Similarity Function:** Cosine Similarity
|
183 |
<!-- - **Training Dataset:** Unknown -->
|
184 |
<!-- - **Language:** Unknown -->
|
@@ -218,9 +158,9 @@ from sentence_transformers import SentenceTransformer
|
|
218 |
model = SentenceTransformer("sentence_transformers_model_id")
|
219 |
# Run inference
|
220 |
sentences = [
|
221 |
-
'
|
222 |
-
'
|
223 |
-
'
|
224 |
]
|
225 |
embeddings = model.encode(sentences)
|
226 |
print(embeddings.shape)
|
@@ -266,36 +206,21 @@ You can finetune this model on your own dataset.
|
|
266 |
|
267 |
| Metric | Value |
|
268 |
|:--------------------|:-----------|
|
269 |
-
| cosine_accuracy@1 | 0.
|
270 |
-
| cosine_accuracy@3 | 0.
|
271 |
-
| cosine_accuracy@5 | 0.
|
272 |
-
| cosine_accuracy@10 | 0.
|
273 |
-
| cosine_precision@1 | 0.
|
274 |
-
| cosine_precision@3 | 0.
|
275 |
-
| cosine_precision@5 | 0.
|
276 |
-
| cosine_precision@10 | 0.
|
277 |
-
| cosine_recall@1 | 0.
|
278 |
-
| cosine_recall@3 | 0.
|
279 |
-
| cosine_recall@5 | 0.
|
280 |
-
| cosine_recall@10 | 0.
|
281 |
-
| cosine_ndcg@10
|
282 |
-
| cosine_mrr@10 | 0.
|
283 |
-
|
|
284 |
-
| dot_accuracy@1 | 0.6246 |
|
285 |
-
| dot_accuracy@3 | 0.8207 |
|
286 |
-
| dot_accuracy@5 | 0.8754 |
|
287 |
-
| dot_accuracy@10 | 0.9267 |
|
288 |
-
| dot_precision@1 | 0.6246 |
|
289 |
-
| dot_precision@3 | 0.2736 |
|
290 |
-
| dot_precision@5 | 0.1751 |
|
291 |
-
| dot_precision@10 | 0.0927 |
|
292 |
-
| dot_recall@1 | 0.6246 |
|
293 |
-
| dot_recall@3 | 0.8207 |
|
294 |
-
| dot_recall@5 | 0.8754 |
|
295 |
-
| dot_recall@10 | 0.9267 |
|
296 |
-
| dot_ndcg@10 | 0.779 |
|
297 |
-
| dot_mrr@10 | 0.7312 |
|
298 |
-
| dot_map@100 | 0.7348 |
|
299 |
|
300 |
<!--
|
301 |
## Bias, Risks and Limitations
|
@@ -316,19 +241,19 @@ You can finetune this model on your own dataset.
|
|
316 |
#### Unnamed Dataset
|
317 |
|
318 |
|
319 |
-
* Size:
|
320 |
* Columns: <code>input</code> and <code>output</code>
|
321 |
* Approximate statistics based on the first 1000 samples:
|
322 |
-
| | input
|
323 |
-
|
324 |
-
| type | string
|
325 |
-
| details | <ul><li>min: 3 tokens</li><li>mean:
|
326 |
* Samples:
|
327 |
-
| input
|
328 |
-
|
329 |
-
| <code>
|
330 |
-
| <code>
|
331 |
-
| <code>
|
332 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
333 |
```json
|
334 |
{
|
@@ -342,19 +267,19 @@ You can finetune this model on your own dataset.
|
|
342 |
#### Unnamed Dataset
|
343 |
|
344 |
|
345 |
-
* Size: 1,
|
346 |
* Columns: <code>input</code> and <code>output</code>
|
347 |
* Approximate statistics based on the first 1000 samples:
|
348 |
-
| | input
|
349 |
-
|
350 |
-
| type | string
|
351 |
-
| details | <ul><li>min: 3 tokens</li><li>mean:
|
352 |
* Samples:
|
353 |
-
| input
|
354 |
-
|
355 |
-
| <code>
|
356 |
-
| <code>
|
357 |
-
| <code>
|
358 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
359 |
```json
|
360 |
{
|
@@ -368,6 +293,8 @@ You can finetune this model on your own dataset.
|
|
368 |
|
369 |
- `eval_strategy`: steps
|
370 |
- `warmup_ratio`: 0.1
|
|
|
|
|
371 |
|
372 |
#### All Hyperparameters
|
373 |
<details><summary>Click to expand</summary>
|
@@ -389,7 +316,7 @@ You can finetune this model on your own dataset.
|
|
389 |
- `adam_beta2`: 0.999
|
390 |
- `adam_epsilon`: 1e-08
|
391 |
- `max_grad_norm`: 1.0
|
392 |
-
- `num_train_epochs`: 3
|
393 |
- `max_steps`: -1
|
394 |
- `lr_scheduler_type`: linear
|
395 |
- `lr_scheduler_kwargs`: {}
|
@@ -429,7 +356,7 @@ You can finetune this model on your own dataset.
|
|
429 |
- `disable_tqdm`: False
|
430 |
- `remove_unused_columns`: True
|
431 |
- `label_names`: None
|
432 |
-
- `load_best_model_at_end`:
|
433 |
- `ignore_data_skip`: False
|
434 |
- `fsdp`: []
|
435 |
- `fsdp_min_num_params`: 0
|
@@ -459,6 +386,7 @@ You can finetune this model on your own dataset.
|
|
459 |
- `gradient_checkpointing`: False
|
460 |
- `gradient_checkpointing_kwargs`: None
|
461 |
- `include_inputs_for_metrics`: False
|
|
|
462 |
- `eval_do_concat_batches`: True
|
463 |
- `fp16_backend`: auto
|
464 |
- `push_to_hub_model_id`: None
|
@@ -482,35 +410,26 @@ You can finetune this model on your own dataset.
|
|
482 |
- `eval_on_start`: False
|
483 |
- `use_liger_kernel`: False
|
484 |
- `eval_use_gather_object`: False
|
485 |
-
- `
|
|
|
|
|
486 |
- `multi_dataset_batch_sampler`: proportional
|
487 |
|
488 |
</details>
|
489 |
|
490 |
### Training Logs
|
491 |
-
| Epoch
|
492 |
-
|
493 |
-
| 0
|
494 |
-
| 0.3195 | 200 | - | 0.9975 | 0.5035 |
|
495 |
-
| 0.6390 | 400 | - | 0.8471 | 0.5845 |
|
496 |
-
| 0.7987 | 500 | 1.0355 | - | - |
|
497 |
-
| 0.9585 | 600 | - | 0.7569 | 0.6157 |
|
498 |
-
| 1.2780 | 800 | - | 0.7542 | 0.6565 |
|
499 |
-
| 1.5974 | 1000 | 0.648 | 0.6835 | 0.6786 |
|
500 |
-
| 1.9169 | 1200 | - | 0.6569 | 0.6851 |
|
501 |
-
| 2.2364 | 1400 | - | 0.6480 | 0.7167 |
|
502 |
-
| 2.3962 | 1500 | 0.5253 | - | - |
|
503 |
-
| 2.5559 | 1600 | - | 0.6506 | 0.7110 |
|
504 |
-
| 2.8754 | 1800 | - | 0.6391 | 0.7348 |
|
505 |
|
506 |
|
507 |
### Framework Versions
|
508 |
-
- Python: 3.11.
|
509 |
-
- Sentence Transformers: 3.
|
510 |
-
- Transformers: 4.
|
511 |
-
- PyTorch: 2.
|
512 |
- Accelerate: 1.1.1
|
513 |
-
- Datasets:
|
514 |
- Tokenizers: 0.20.3
|
515 |
|
516 |
## Citation
|
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
+
- dataset_size:4372
|
8 |
- loss:MultipleNegativesRankingLoss
|
9 |
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
widget:
|
11 |
+
- source_sentence: analista de produtos pl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
sentences:
|
13 |
+
- product management
|
14 |
- business operations
|
15 |
+
- logistic management generalist
|
16 |
+
- source_sentence: product analyst ii
|
|
|
17 |
sentences:
|
|
|
|
|
18 |
- product management
|
19 |
+
- business development (bizdev)
|
20 |
+
- compliance
|
21 |
+
- source_sentence: analista de gestão de gente pl
|
22 |
+
sentences:
|
23 |
+
- data engineering
|
24 |
+
- hr generalist
|
25 |
+
- data analysis
|
26 |
+
- source_sentence: general services
|
27 |
+
sentences:
|
28 |
+
- financial planning and analysis (fp&a)
|
29 |
+
- customer success
|
30 |
+
- general services
|
31 |
+
- source_sentence: const parceria de negocio ii
|
32 |
sentences:
|
33 |
+
- hr generalist
|
34 |
+
- copywriter
|
35 |
+
- business development (bizdev)
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
metrics:
|
|
|
51 |
- cosine_ndcg@10
|
52 |
- cosine_mrr@10
|
53 |
- cosine_map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
model-index:
|
55 |
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
56 |
results:
|
|
|
62 |
type: unknown
|
63 |
metrics:
|
64 |
- type: cosine_accuracy@1
|
65 |
+
value: 0.3202195791399817
|
66 |
name: Cosine Accuracy@1
|
67 |
- type: cosine_accuracy@3
|
68 |
+
value: 0.454711802378774
|
69 |
name: Cosine Accuracy@3
|
70 |
- type: cosine_accuracy@5
|
71 |
+
value: 0.5224153705397987
|
72 |
name: Cosine Accuracy@5
|
73 |
- type: cosine_accuracy@10
|
74 |
+
value: 0.6184812442817932
|
75 |
name: Cosine Accuracy@10
|
76 |
- type: cosine_precision@1
|
77 |
+
value: 0.3202195791399817
|
78 |
name: Cosine Precision@1
|
79 |
- type: cosine_precision@3
|
80 |
+
value: 0.15157060079292467
|
81 |
name: Cosine Precision@3
|
82 |
- type: cosine_precision@5
|
83 |
+
value: 0.10448307410795975
|
84 |
name: Cosine Precision@5
|
85 |
- type: cosine_precision@10
|
86 |
+
value: 0.061848124428179316
|
87 |
name: Cosine Precision@10
|
88 |
- type: cosine_recall@1
|
89 |
+
value: 0.3202195791399817
|
90 |
name: Cosine Recall@1
|
91 |
- type: cosine_recall@3
|
92 |
+
value: 0.454711802378774
|
93 |
name: Cosine Recall@3
|
94 |
- type: cosine_recall@5
|
95 |
+
value: 0.5224153705397987
|
96 |
name: Cosine Recall@5
|
97 |
- type: cosine_recall@10
|
98 |
+
value: 0.6184812442817932
|
99 |
name: Cosine Recall@10
|
100 |
- type: cosine_ndcg@10
|
101 |
+
value: 0.45577270813945114
|
102 |
name: Cosine Ndcg@10
|
103 |
- type: cosine_mrr@10
|
104 |
+
value: 0.4052037496913979
|
105 |
name: Cosine Mrr@10
|
106 |
- type: cosine_map@100
|
107 |
+
value: 0.4178228611548902
|
108 |
name: Cosine Map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
---
|
110 |
|
111 |
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
|
|
118 |
- **Model Type:** Sentence Transformer
|
119 |
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
|
120 |
- **Maximum Sequence Length:** 384 tokens
|
121 |
+
- **Output Dimensionality:** 768 dimensions
|
122 |
- **Similarity Function:** Cosine Similarity
|
123 |
<!-- - **Training Dataset:** Unknown -->
|
124 |
<!-- - **Language:** Unknown -->
|
|
|
158 |
model = SentenceTransformer("sentence_transformers_model_id")
|
159 |
# Run inference
|
160 |
sentences = [
|
161 |
+
'const parceria de negocio ii',
|
162 |
+
'business development (bizdev)',
|
163 |
+
'hr generalist',
|
164 |
]
|
165 |
embeddings = model.encode(sentences)
|
166 |
print(embeddings.shape)
|
|
|
206 |
|
207 |
| Metric | Value |
|
208 |
|:--------------------|:-----------|
|
209 |
+
| cosine_accuracy@1 | 0.3202 |
|
210 |
+
| cosine_accuracy@3 | 0.4547 |
|
211 |
+
| cosine_accuracy@5 | 0.5224 |
|
212 |
+
| cosine_accuracy@10 | 0.6185 |
|
213 |
+
| cosine_precision@1 | 0.3202 |
|
214 |
+
| cosine_precision@3 | 0.1516 |
|
215 |
+
| cosine_precision@5 | 0.1045 |
|
216 |
+
| cosine_precision@10 | 0.0618 |
|
217 |
+
| cosine_recall@1 | 0.3202 |
|
218 |
+
| cosine_recall@3 | 0.4547 |
|
219 |
+
| cosine_recall@5 | 0.5224 |
|
220 |
+
| cosine_recall@10 | 0.6185 |
|
221 |
+
| **cosine_ndcg@10** | **0.4558** |
|
222 |
+
| cosine_mrr@10 | 0.4052 |
|
223 |
+
| cosine_map@100 | 0.4178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
<!--
|
226 |
## Bias, Risks and Limitations
|
|
|
241 |
#### Unnamed Dataset
|
242 |
|
243 |
|
244 |
+
* Size: 4,372 training samples
|
245 |
* Columns: <code>input</code> and <code>output</code>
|
246 |
* Approximate statistics based on the first 1000 samples:
|
247 |
+
| | input | output |
|
248 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
249 |
+
| type | string | string |
|
250 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 10.55 tokens</li><li>max: 141 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.03 tokens</li><li>max: 12 tokens</li></ul> |
|
251 |
* Samples:
|
252 |
+
| input | output |
|
253 |
+
|:--------------------------------------------------------|:------------------------------------|
|
254 |
+
| <code>analista de desenvolvimento organizacional</code> | <code>learning & development</code> |
|
255 |
+
| <code>software engineer sr</code> | <code>software engineering</code> |
|
256 |
+
| <code>gerente de grupo de produtos i</code> | <code>product management</code> |
|
257 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
258 |
```json
|
259 |
{
|
|
|
267 |
#### Unnamed Dataset
|
268 |
|
269 |
|
270 |
+
* Size: 1,093 evaluation samples
|
271 |
* Columns: <code>input</code> and <code>output</code>
|
272 |
* Approximate statistics based on the first 1000 samples:
|
273 |
+
| | input | output |
|
274 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
275 |
+
| type | string | string |
|
276 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.91 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.97 tokens</li><li>max: 12 tokens</li></ul> |
|
277 |
* Samples:
|
278 |
+
| input | output |
|
279 |
+
|:-----------------------------------------------|:------------------------------------|
|
280 |
+
| <code>analista de student experience ii</code> | <code>customer support</code> |
|
281 |
+
| <code>legal support</code> | <code>legal support</code> |
|
282 |
+
| <code>analista de dho</code> | <code>learning & development</code> |
|
283 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
284 |
```json
|
285 |
{
|
|
|
293 |
|
294 |
- `eval_strategy`: steps
|
295 |
- `warmup_ratio`: 0.1
|
296 |
+
- `load_best_model_at_end`: True
|
297 |
+
- `batch_sampler`: no_duplicates
|
298 |
|
299 |
#### All Hyperparameters
|
300 |
<details><summary>Click to expand</summary>
|
|
|
316 |
- `adam_beta2`: 0.999
|
317 |
- `adam_epsilon`: 1e-08
|
318 |
- `max_grad_norm`: 1.0
|
319 |
+
- `num_train_epochs`: 3
|
320 |
- `max_steps`: -1
|
321 |
- `lr_scheduler_type`: linear
|
322 |
- `lr_scheduler_kwargs`: {}
|
|
|
356 |
- `disable_tqdm`: False
|
357 |
- `remove_unused_columns`: True
|
358 |
- `label_names`: None
|
359 |
+
- `load_best_model_at_end`: True
|
360 |
- `ignore_data_skip`: False
|
361 |
- `fsdp`: []
|
362 |
- `fsdp_min_num_params`: 0
|
|
|
386 |
- `gradient_checkpointing`: False
|
387 |
- `gradient_checkpointing_kwargs`: None
|
388 |
- `include_inputs_for_metrics`: False
|
389 |
+
- `include_for_metrics`: []
|
390 |
- `eval_do_concat_batches`: True
|
391 |
- `fp16_backend`: auto
|
392 |
- `push_to_hub_model_id`: None
|
|
|
410 |
- `eval_on_start`: False
|
411 |
- `use_liger_kernel`: False
|
412 |
- `eval_use_gather_object`: False
|
413 |
+
- `average_tokens_across_devices`: False
|
414 |
+
- `prompts`: None
|
415 |
+
- `batch_sampler`: no_duplicates
|
416 |
- `multi_dataset_batch_sampler`: proportional
|
417 |
|
418 |
</details>
|
419 |
|
420 |
### Training Logs
|
421 |
+
| Epoch | Step | cosine_ndcg@10 |
|
422 |
+
|:-----:|:----:|:--------------:|
|
423 |
+
| 0 | 0 | 0.4558 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
|
426 |
### Framework Versions
|
427 |
+
- Python: 3.11.0
|
428 |
+
- Sentence Transformers: 3.3.1
|
429 |
+
- Transformers: 4.46.3
|
430 |
+
- PyTorch: 2.2.2
|
431 |
- Accelerate: 1.1.1
|
432 |
+
- Datasets: 3.1.0
|
433 |
- Tokenizers: 0.20.3
|
434 |
|
435 |
## Citation
|
config.json
CHANGED
@@ -19,6 +19,6 @@
|
|
19 |
"pad_token_id": 1,
|
20 |
"relative_attention_num_buckets": 32,
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"vocab_size": 30527
|
24 |
}
|
|
|
19 |
"pad_token_id": 1,
|
20 |
"relative_attention_num_buckets": 32,
|
21 |
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.46.3",
|
23 |
"vocab_size": 30527
|
24 |
}
|
config_sentence_transformers.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name":
|
10 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.46.3",
|
5 |
+
"pytorch": "2.2.2"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b12db7f02b40be2f96f0917beaaf9462baea0bc46b6ca85a26613d5db4d792d4
|
3 |
size 437967672
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1dab884e2c5d7c8d23955392573b1b67fdafe15fd6f1a52d4dbe0eaf6ab1baf
|
3 |
+
size 5560
|