{ "policy_class": { ":type:": "", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a562f798540>" }, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 6500000, "_total_timesteps": 6500000, "_num_timesteps_at_start": 5500000, "seed": null, "action_noise": null, "start_time": 1715714815567229137, "learning_rate": 5e-05, "tensorboard_log": "./", "_last_obs": { ":type:": "" }, "_last_episode_starts": { ":type:": "" }, "_last_original_obs": { ":type:": "" }, "_episode_num": 6118, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": { ":type:": "" }, "ep_success_buffer": { ":type:": "" }, "_n_updates": 1612500, "observation_space": { ":type:": "", "dtype": "uint8", "bounded_below": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]", "bounded_above": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]", "_shape": [ 3, 250, 160 ], "low": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "high": "[[[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]]", "low_repr": "0", "high_repr": "255", "_np_random": "Generator(PCG64)" }, "action_space": { ":type:": "", "n": "5", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)" }, "n_envs": 1, "buffer_size": 70000, "batch_size": 64, "learning_starts": 50000, "tau": 1.0, "gamma": 0.999, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "_maybe_cast_dtype": ")>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a562f962200>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "" }, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.3, "target_update_interval": 5000, "_n_calls": 6500000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": { ":type:": "" }, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": { ":type:": "" } }