from stable_baselines3 import DQN from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.monitor import Monitor import gymnasium as gym import argparse from datetime import datetime # This script should have some options # 1. Turn off the stochasticity as determined by the ALEv5 # Even if deterministic is set to true in evaluate policy, the environment will ignore this 25% of the time # To compensate for this, we can set the repeat action probability to 0 # DONE # 2. Print out the evaluation metrics or save to file # DONE # 4. Print the keyword args for the environment? I think this might be helpful... # DONE (ish), printing the environment specifications. # 5. Add option flag to accept file path for model # DONE # 6. Add option flag to accept number of episodes # DONE # 7. Save evaluations in a log file # DONE # 8. Add option flag for mean rewards/length or discrete rewards/lengths # IN PROGRESS parser = argparse.ArgumentParser() parser.add_argument("-r", "--repeat_action_probability", help="repeat action probability, default 0.25", type=float, default=0.25) parser.add_argument("-f", "--frameskip", help="frameskip, default 4", type=int, default=4) # parser.add_argument("-o", "--observe", help="observe agent", action="store_const", const=True) parser.add_argument("-p", "--print", help="print environment information", action="store_const", const=True) parser.add_argument("-e", "--num_episodes", help="specify the number of episodes to evaluate, default 1", type=int, default=1) parser.add_argument("-a", "--agent_filepath", help="file path to agent to watch, minus the .zip extension", type=str, required=True) # parser.add_argument("-s", "--savefile", help="Specify a filepath to save the evaluation metrics.", type=str, default="evals") args = parser.parse_args() model_name = args.agent_filepath model = DQN.load(model_name) # There should really be a condition here to catch input defining directories with forward slashes dirs = model_name.split("/") # remove the last item, as it is the zip file dirs.pop() model_dir = "/".join(dirs) # Retrieve the environment eval_env = Monitor(gym.make("ALE/Pacman-v5", render_mode="rgb_array", repeat_action_probability=args.repeat_action_probability, frameskip=args.frameskip)) if args.print == True: env_info = str(eval_env.spec).split(", ") for item in env_info: print(item) # Evaluate the policy # Toggle the mean or discrete evaluations here mean_rwd, std_rwd = evaluate_policy(model.policy, eval_env, n_eval_episodes=args.num_episodes) # savefile = args.savefile savefile = model_dir + "/evals" date = datetime.now().strftime("%d %b %Y") time = datetime.now().strftime("%I:%M:%S %p") with open(f"{savefile}.txt", "a") as file: file.write("-----\n") file.write(f"Evaluation of {model_name} on {date} at {time}\n") file.write(f"Episodes evaluated: {args.num_episodes}\n") file.write(f"mean_rwd: {mean_rwd}\n") file.write(f"std_rwd: {std_rwd}\n\n")