Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Real-time Speech Summarization for Medical Conversations
|
7 |
+
|
8 |
+
Please cite this paper: https://arxiv.org/abs/2406.15888
|
9 |
+
|
10 |
+
@article{VietMed_Sum,
|
11 |
+
title={Real-time Speech Summarization for Medical Conversations},
|
12 |
+
author={Le-Duc, Khai and Nguyen, Khai-Nguyen and Vo-Dang, Long and Hy, Truong-Son},
|
13 |
+
journal={arXiv preprint arXiv:2406.15888},
|
14 |
+
booktitle={Interspeech 2024},
|
15 |
+
url = {https://arxiv.org/abs/2406.15888}
|
16 |
+
year={2024}
|
17 |
+
}
|
18 |
+
|
19 |
+
# Model Card for Model ID
|
20 |
+
|
21 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
### Model Description
|
28 |
+
|
29 |
+
<!-- Provide a longer summary of what this model is. -->
|
30 |
+
This model summarizes medical dialogues in Vietnamese. It can work in tandem with an ASR system to provide real-time dialogue summary.
|
31 |
+
|
32 |
+
- **Developed by:** Khai-Nguyen Nguyen
|
33 |
+
- **Language(s) (NLP):** Vietnamese
|
34 |
+
- **Finetuned from model [optional]:** ViT5
|
35 |
+
|
36 |
+
|
37 |
+
## How to Get Started with the Model
|
38 |
+
|
39 |
+
Install the pre-requisite packages in Python.
|
40 |
+
```python
|
41 |
+
pip install transformers
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
Use the code below to get started with the model.
|
46 |
+
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import pipeline
|
50 |
+
|
51 |
+
# Initialize the pipeline with the ViT5 model, specify the device to use CUDA for GPU acceleration
|
52 |
+
pipe = pipeline("text2text-generation", model="monishsystem/medisum_vit5", device='cuda')
|
53 |
+
|
54 |
+
# Example text in Vietnamese describing a traditional medicine product
|
55 |
+
example = "Loại thuốc này chứa các thành phần đông y đặc biệt tốt cho sức khoẻ, giúp tăng cường sinh lý và bổ thận tráng dương, đặc biệt tốt cho người cao tuổi và người có bệnh lý nền"
|
56 |
+
|
57 |
+
# Generate a summary for the input text with a maximum length of 50 tokens
|
58 |
+
summary = pipe(example, max_new_tokens=50)
|
59 |
+
|
60 |
+
# Print the generated summary
|
61 |
+
print(summary)
|
62 |
+
```
|