leduckhai commited on
Commit
34d33dd
1 Parent(s): be6f7de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Real-time Speech Summarization for Medical Conversations
7
+
8
+ Please cite this paper: https://arxiv.org/abs/2406.15888
9
+
10
+ @article{VietMed_Sum,
11
+ title={Real-time Speech Summarization for Medical Conversations},
12
+ author={Le-Duc, Khai and Nguyen, Khai-Nguyen and Vo-Dang, Long and Hy, Truong-Son},
13
+ journal={arXiv preprint arXiv:2406.15888},
14
+ booktitle={Interspeech 2024},
15
+ url = {https://arxiv.org/abs/2406.15888}
16
+ year={2024}
17
+ }
18
+
19
+ # Model Card for Model ID
20
+
21
+ <!-- Provide a quick summary of what the model is/does. -->
22
+
23
+
24
+
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+
29
+ <!-- Provide a longer summary of what this model is. -->
30
+ This model summarizes medical dialogues in Vietnamese. It can work in tandem with an ASR system to provide real-time dialogue summary.
31
+
32
+ - **Developed by:** Khai-Nguyen Nguyen
33
+ - **Language(s) (NLP):** Vietnamese
34
+ - **Finetuned from model [optional]:** ViT5
35
+
36
+
37
+ ## How to Get Started with the Model
38
+
39
+ Install the pre-requisite packages in Python.
40
+ ```python
41
+ pip install transformers
42
+ ```
43
+
44
+
45
+ Use the code below to get started with the model.
46
+
47
+
48
+ ```python
49
+ from transformers import pipeline
50
+
51
+ # Initialize the pipeline with the ViT5 model, specify the device to use CUDA for GPU acceleration
52
+ pipe = pipeline("text2text-generation", model="monishsystem/medisum_vit5", device='cuda')
53
+
54
+ # Example text in Vietnamese describing a traditional medicine product
55
+ example = "Loại thuốc này chứa các thành phần đông y đặc biệt tốt cho sức khoẻ, giúp tăng cường sinh lý và bổ thận tráng dương, đặc biệt tốt cho người cao tuổi và người có bệnh lý nền"
56
+
57
+ # Generate a summary for the input text with a maximum length of 50 tokens
58
+ summary = pipe(example, max_new_tokens=50)
59
+
60
+ # Print the generated summary
61
+ print(summary)
62
+ ```