--- library_name: transformers datasets: - leduckhai/VietMed-Sum language: - vi pipeline_tag: summarization --- # Real-time Speech Summarization for Medical Conversations
Please cite this paper: https://arxiv.org/abs/2406.15888 @article{VietMed_Sum, title={Real-time Speech Summarization for Medical Conversations}, author={Le-Duc, Khai and Nguyen, Khai-Nguyen and Vo-Dang, Long and Hy, Truong-Son}, journal={arXiv preprint arXiv:2406.15888}, booktitle={Interspeech 2024}, url = {https://arxiv.org/abs/2406.15888} year={2024} } # Model Card for Model ID ## Model Details ### Model Description This model summarizes medical dialogues in Vietnamese. It can work in tandem with an ASR system to provide real-time dialogue summary. - **Developed by:** Khai-Nguyen Nguyen - **Language(s) (NLP):** Vietnamese - **Finetuned from model [optional]:** ViT5 ## How to Get Started with the Model Install the pre-requisite packages in Python. ```python pip install transformers ``` Use the code below to get started with the model. ```python from transformers import pipeline # Initialize the pipeline with the ViT5 model, specify the device to use CUDA for GPU acceleration pipe = pipeline("text2text-generation", model="monishsystem/medisum_vit5", device='cuda') # Example text in Vietnamese describing a traditional medicine product example = "Loại thuốc này chứa các thành phần đông y đặc biệt tốt cho sức khoẻ, giúp tăng cường sinh lý và bổ thận tráng dương, đặc biệt tốt cho người cao tuổi và người có bệnh lý nền" # Generate a summary for the input text with a maximum length of 50 tokens summary = pipe(example, max_new_tokens=50) # Print the generated summary print(summary) ```