leebaidyanathan
commited on
Commit
•
ddc212a
1
Parent(s):
6ce2398
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 223.51 +/- 38.67
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d688404d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d68840560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d688405f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d68840680>", "_build": "<function ActorCriticPolicy._build at 0x7f1d68840710>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d688407a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d68840830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d688408c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d68840950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d688409e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d68840a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d68896210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652035708.3344884, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDxvT09SkI4mN1uvFKGu7cPGOA6M08xNwAAgD8AAIA/Mu7KvjxVpj5ecKC90y2svgdSo70zs905AAAAAAAAAACdR50+D99ovIXcQ7s+jDM5OqKvvSBWXjoAAIA/AACAP7MoED5xP0C70ixevXVuIb5qZ4a8CjUaPwAAgD8AAAAAM44qPyjk+r0wx7o6Kot+OTtTeD6xGAC6AACAPwAAgD9KWZ8+T/lTvFJ2+Tu/8c25WlyavaLiEzYAAIA/AACAP1D5ir6kby48w0Cwu2VXMjn/orS96UkmugAAgD8AAIA/XbZVvq+6Cj2ahRQ9FuDUPBVEmb7QCEQ8AACAPwAAgD/Nu/+811MKuWaRkrvRbFu2y1WAuXDGrToAAIA/AACAP5NM4r7AYA6+NgZGvsJYRL1qr7A+673CvAAAgD8AAIA/2gWJPqSRHjztGL261AMeuK5Drj0iZiC5AACAPwAAgD+6Nj6+PRxMPF7jQLseokM5LibZvdYEKDgAAIA/AACAP81sJbpS4Jm5WTYXvGqmuzSFkb66DkghtAAAgD8AAIA/2jTQPYcdTT8Too+9duMgv1XGQj4iA9e9AAAAAAAAAABA/rE9UnDNubCtazsuvKA4gYeKu9l1ELoAAIA/AAAAAAZws75Ncpi9JqGWOit7HzmN4qU+UUg5uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbtxifm65WECUhpRSlIwBbJRN6AOMAXSUR0Ca7Q7J4jbBdX2UKGgGaAloD0MIGvz9YrbMW0CUhpRSlGgVTegDaBZHQJrygGTs6aN1fZQoaAZoCWgPQwgNbQA2IPlhQJSGlFKUaBVN6ANoFkdAmvKWi5/b03V9lChoBmgJaA9DCCpUNxd/0V1AlIaUUpRoFU3oA2gWR0Ca85OY6XBydX2UKGgGaAloD0MI2LYos0H+Y0CUhpRSlGgVTegDaBZHQJr2npu/Dcd1fZQoaAZoCWgPQwhWSPlJtYtZQJSGlFKUaBVN6ANoFkdAmvjsbWEsa3V9lChoBmgJaA9DCHKG4o43LVhAlIaUUpRoFU3oA2gWR0Ca+o08vEjxdX2UKGgGaAloD0MIXyS05VxaOMCUhpRSlGgVS+poFkdAmvsDx9XtB3V9lChoBmgJaA9DCJYGflTDnELAlIaUUpRoFUu+aBZHQJsCy4wyqMp1fZQoaAZoCWgPQwixiGGHMQkMwJSGlFKUaBVLxGgWR0CbBfKQq7ROdX2UKGgGaAloD0MIJR+7C5QTXkCUhpRSlGgVTegDaBZHQJsJo3R5TqB1fZQoaAZoCWgPQwj99QoL7gs7QJSGlFKUaBVL8WgWR0CbC1STQmeEdX2UKGgGaAloD0MIzNQkeEOjXkCUhpRSlGgVTegDaBZHQJsVtIqbz9V1fZQoaAZoCWgPQwgPCkrRStBiQJSGlFKUaBVN6ANoFkdAmxkRSYPXkHV9lChoBmgJaA9DCEZEMXmDYGJAlIaUUpRoFU3oA2gWR0CbHZz7uUlidX2UKGgGaAloD0MIW+m12VhjY0CUhpRSlGgVTegDaBZHQJsg8yqMm4R1fZQoaAZoCWgPQwitiJrocwNjQJSGlFKUaBVN6ANoFkdAmyvi9ytFKHV9lChoBmgJaA9DCBUcXhCRdl5AlIaUUpRoFU3oA2gWR0CbLLGOMl1KdX2UKGgGaAloD0MIe/SG+0g8YkCUhpRSlGgVTegDaBZHQJtCApAlfJF1fZQoaAZoCWgPQwhuwygIHo5iQJSGlFKUaBVN6ANoFkdAm0Q8pkPMCHV9lChoBmgJaA9DCEbPLXQlSlVAlIaUUpRoFU3oA2gWR0CbSYmoR7JGdX2UKGgGaAloD0MI2zF1V3bCXECUhpRSlGgVTegDaBZHQJtJpYaHbh51fZQoaAZoCWgPQwhUxyqlZ/VcQJSGlFKUaBVN6ANoFkdAm0qaPwNLDnV9lChoBmgJaA9DCFMkXwmkvDFAlIaUUpRoFUvDaBZHQJtPqwUxmCl1fZQoaAZoCWgPQwgZraOqCSBjQJSGlFKUaBVN6ANoFkdAm1I8H8jzI3V9lChoBmgJaA9DCDyDhv4JblxAlIaUUpRoFU3oA2gWR0CbWryTY/VzdX2UKGgGaAloD0MIiQtAo3SZHcCUhpRSlGgVS7xoFkdAm10f24/eL3V9lChoBmgJaA9DCGdg5GVNEF9AlIaUUpRoFU3oA2gWR0CbXeXDWK/EdX2UKGgGaAloD0MIzPCfbqAJXcCUhpRSlGgVTT4BaBZHQJtfuvLX+VF1fZQoaAZoCWgPQwhM/FHUmU9eQJSGlFKUaBVN6ANoFkdAm2EnKnvUjXV9lChoBmgJaA9DCAMjL2tiCVxAlIaUUpRoFU3oA2gWR0CbYrAo5PuYdX2UKGgGaAloD0MI226CbxqkY0CUhpRSlGgVTV8CaBZHQJtjtsTFl051fZQoaAZoCWgPQwj+DG/W4K0jwJSGlFKUaBVLymgWR0CbalhnrY5DdX2UKGgGaAloD0MIT83lBkMSWECUhpRSlGgVTegDaBZHQJtrRVDKHO91fZQoaAZoCWgPQwgfD313K6BhQJSGlFKUaBVN6ANoFkdAm24XIyTINnV9lChoBmgJaA9DCFWkwthCcBrAlIaUUpRoFUvPaBZHQJtuq3gDRtx1fZQoaAZoCWgPQwjDZRU2A8xfQJSGlFKUaBVN6ANoFkdAm3H7C3w1BXV9lChoBmgJaA9DCJ+u7ljs+mVAlIaUUpRoFU3oA2gWR0CbdOHVwxWUdX2UKGgGaAloD0MIstR6v9FeGcCUhpRSlGgVS+hoFkdAm3pOnAIppnV9lChoBmgJaA9DCMdl3NRA1lhAlIaUUpRoFU3oA2gWR0Cbf0Kyv9tNdX2UKGgGaAloD0MIfNRfr7C8XUCUhpRSlGgVTegDaBZHQJuXRM+NcW11fZQoaAZoCWgPQwhP6zao/URCQJSGlFKUaBVL22gWR0Cbl8oJzDGcdX2UKGgGaAloD0MIhdBBl3A4VkCUhpRSlGgVTegDaBZHQJudN8pkPMB1fZQoaAZoCWgPQwh08ExoEjdiQJSGlFKUaBVN6ANoFkdAm5535rP+oHV9lChoBmgJaA9DCMy4qYHmfWBAlIaUUpRoFU3oA2gWR0Cbp6ruYx+KdX2UKGgGaAloD0MIOEnzx7QiYECUhpRSlGgVTegDaBZHQJuyZG9YfXB1fZQoaAZoCWgPQwh3K0t0lg5ZQJSGlFKUaBVN6ANoFkdAm7Y3y/bj+HV9lChoBmgJaA9DCIkl5e5zD1lAlIaUUpRoFU3oA2gWR0CbuKQdjoZAdX2UKGgGaAloD0MIEvjDz3/fYUCUhpRSlGgVTdwCaBZHQJu5RqrR0EJ1fZQoaAZoCWgPQwiL+bmhKfBaQJSGlFKUaBVN6ANoFkdAm7xN5+pfhXV9lChoBmgJaA9DCNnO91PjE2NAlIaUUpRoFU3oA2gWR0Cbva3EyckMdX2UKGgGaAloD0MImbfqOlT5RkCUhpRSlGgVS61oFkdAm8DelO45LnV9lChoBmgJaA9DCGlwW1t4G2FAlIaUUpRoFU3oA2gWR0Cbxo4W1twadX2UKGgGaAloD0MI2xMktrt3XkCUhpRSlGgVTegDaBZHQJvJ2NMoMKF1fZQoaAZoCWgPQwjO34RCBH1aQJSGlFKUaBVN6ANoFkdAm8pzeoDPnnV9lChoBmgJaA9DCMnogCTseyNAlIaUUpRoFUvlaBZHQJvKhjvuw5h1fZQoaAZoCWgPQwjUgaynVoFZQJSGlFKUaBVN6ANoFkdAm9B/4ZdfLXV9lChoBmgJaA9DCCOD3EWYPl5AlIaUUpRoFU3oA2gWR0Cb23fAbhm5dX2UKGgGaAloD0MIpYXLKmw6PECUhpRSlGgVS7FoFkdAm93WNzbN8nV9lChoBmgJaA9DCAZ/v5gte1pAlIaUUpRoFU3oA2gWR0Cb88n13+uOdX2UKGgGaAloD0MIeVvptdn3WkCUhpRSlGgVTegDaBZHQJv0UI7eVLV1fZQoaAZoCWgPQwiLqfQTzrNeQJSGlFKUaBVN6ANoFkdAm/lPLDAJs3V9lChoBmgJaA9DCKJfWz99e2JAlIaUUpRoFU3oA2gWR0Cb+nKTSsr/dX2UKGgGaAloD0MIsaayKOy6J0CUhpRSlGgVS59oFkdAnAAUKiO/+XV9lChoBmgJaA9DCHKJIw9EL2FAlIaUUpRoFU3oA2gWR0CcAvvpQk5ZdX2UKGgGaAloD0MIQ6m9iLYUZUCUhpRSlGgVTegDaBZHQJwP21LJ0XB1fZQoaAZoCWgPQwgo8iTpGhBkQJSGlFKUaBVN6ANoFkdAnBLDwYtQK3V9lChoBmgJaA9DCJEKYwvBCmFAlIaUUpRoFU3oA2gWR0CcFbtKZlWfdX2UKGgGaAloD0MIGvonuNglYUCUhpRSlGgVTegDaBZHQJwXA8+zMRp1fZQoaAZoCWgPQwgGobyPo6JjQJSGlFKUaBVN6ANoFkdAnBoxS9/SY3V9lChoBmgJaA9DCBMro5HPmx3AlIaUUpRoFUvCaBZHQJwerl+3H7x1fZQoaAZoCWgPQwit9rAXCv1dQJSGlFKUaBVN6ANoFkdAnB+LpNbkfnV9lChoBmgJaA9DCM+EJoklYV1AlIaUUpRoFU3oA2gWR0CcIoYvnKW+dX2UKGgGaAloD0MIpHITtTR+YECUhpRSlGgVTegDaBZHQJwjE/zJ6pp1fZQoaAZoCWgPQwg7N23G6YBiQJSGlFKUaBVN6ANoFkdAnCMneBQN1HV9lChoBmgJaA9DCPkUAOMZ3EBAlIaUUpRoFUuoaBZHQJwjLn7pFCt1fZQoaAZoCWgPQwiSXWkZqRM4QJSGlFKUaBVLmGgWR0CcLPqbBoEkdX2UKGgGaAloD0MIc0f/y7VYMkCUhpRSlGgVS6hoFkdAnC2RwAEMb3V9lChoBmgJaA9DCKj+QSTDqmFAlIaUUpRoFU3oA2gWR0CcM4JtSAH3dX2UKGgGaAloD0MIvVXXoZoxXkCUhpRSlGgVTegDaBZHQJw1vjQzDXR1fZQoaAZoCWgPQwg2HQHcLOYkQJSGlFKUaBVLu2gWR0CcR44oZydXdX2UKGgGaAloD0MIdxTnqCMmZECUhpRSlGgVTegDaBZHQJxK9WMju8d1fZQoaAZoCWgPQwhb7swEw6VhQJSGlFKUaBVN6ANoFkdAnFCg+EAYHnV9lChoBmgJaA9DCD3uW60TG2BAlIaUUpRoFU3oA2gWR0CcUcy+Yc//dX2UKGgGaAloD0MIOzYC8botUUCUhpRSlGgVTegDaBZHQJxXZUwSJ0p1fZQoaAZoCWgPQwixiGGHMZEtwJSGlFKUaBVL5GgWR0CcWNBQvYe1dX2UKGgGaAloD0MIyAxUxj9hY0CUhpRSlGgVTegDaBZHQJxZ/WpZOi51fZQoaAZoCWgPQwif46PFGeFBQJSGlFKUaBVLn2gWR0CcYrEdeY2LdX2UKGgGaAloD0MIfHvXoC/VXkCUhpRSlGgVTegDaBZHQJxofilzltF1fZQoaAZoCWgPQwiK6NfWT7daQJSGlFKUaBVN6ANoFkdAnGtigTRIBnV9lChoBmgJaA9DCJ9VZkprV2BAlIaUUpRoFU3oA2gWR0CccAugHu7ZdX2UKGgGaAloD0MIWDuKc9SeWkCUhpRSlGgVTegDaBZHQJx04jB2wFF1fZQoaAZoCWgPQwiVLCehdPpgQJSGlFKUaBVN6ANoFkdAnHXRCD28I3V9lChoBmgJaA9DCHY4ukp31+2/lIaUUpRoFUuXaBZHQJx2+qxTsIF1fZQoaAZoCWgPQwgOEqJ8QT5fQJSGlFKUaBVN6ANoFkdAnHlYJE6T4nV9lChoBmgJaA9DCB11dFyN9WBAlIaUUpRoFU3oA2gWR0CceWLncL0BdX2UKGgGaAloD0MIodgKmpagQcCUhpRSlGgVS+loFkdAnIDF8LKFI3V9lChoBmgJaA9DCKcC7nn+32BAlIaUUpRoFU3oA2gWR0CchHk7OmiydX2UKGgGaAloD0MI5WGh1jRqYkCUhpRSlGgVTegDaBZHQJyKQNOM2m51fZQoaAZoCWgPQwhTzhd7L6NdQJSGlFKUaBVN6ANoFkdAnIyAVj7Q9nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bf5c5ad4f1004950fac24884cc9deb518687155ccbf277883ae2e07c075b3ee
|
3 |
+
size 143637
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d688404d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d68840560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d688405f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d68840680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1d68840710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1d688407a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d68840830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1d688408c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d68840950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d688409e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d68840a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1d68896210>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652035708.3344884,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDxvT09SkI4mN1uvFKGu7cPGOA6M08xNwAAgD8AAIA/Mu7KvjxVpj5ecKC90y2svgdSo70zs905AAAAAAAAAACdR50+D99ovIXcQ7s+jDM5OqKvvSBWXjoAAIA/AACAP7MoED5xP0C70ixevXVuIb5qZ4a8CjUaPwAAgD8AAAAAM44qPyjk+r0wx7o6Kot+OTtTeD6xGAC6AACAPwAAgD9KWZ8+T/lTvFJ2+Tu/8c25WlyavaLiEzYAAIA/AACAP1D5ir6kby48w0Cwu2VXMjn/orS96UkmugAAgD8AAIA/XbZVvq+6Cj2ahRQ9FuDUPBVEmb7QCEQ8AACAPwAAgD/Nu/+811MKuWaRkrvRbFu2y1WAuXDGrToAAIA/AACAP5NM4r7AYA6+NgZGvsJYRL1qr7A+673CvAAAgD8AAIA/2gWJPqSRHjztGL261AMeuK5Drj0iZiC5AACAPwAAgD+6Nj6+PRxMPF7jQLseokM5LibZvdYEKDgAAIA/AACAP81sJbpS4Jm5WTYXvGqmuzSFkb66DkghtAAAgD8AAIA/2jTQPYcdTT8Too+9duMgv1XGQj4iA9e9AAAAAAAAAABA/rE9UnDNubCtazsuvKA4gYeKu9l1ELoAAIA/AAAAAAZws75Ncpi9JqGWOit7HzmN4qU+UUg5uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbtxifm65WECUhpRSlIwBbJRN6AOMAXSUR0Ca7Q7J4jbBdX2UKGgGaAloD0MIGvz9YrbMW0CUhpRSlGgVTegDaBZHQJrygGTs6aN1fZQoaAZoCWgPQwgNbQA2IPlhQJSGlFKUaBVN6ANoFkdAmvKWi5/b03V9lChoBmgJaA9DCCpUNxd/0V1AlIaUUpRoFU3oA2gWR0Ca85OY6XBydX2UKGgGaAloD0MI2LYos0H+Y0CUhpRSlGgVTegDaBZHQJr2npu/Dcd1fZQoaAZoCWgPQwhWSPlJtYtZQJSGlFKUaBVN6ANoFkdAmvjsbWEsa3V9lChoBmgJaA9DCHKG4o43LVhAlIaUUpRoFU3oA2gWR0Ca+o08vEjxdX2UKGgGaAloD0MIXyS05VxaOMCUhpRSlGgVS+poFkdAmvsDx9XtB3V9lChoBmgJaA9DCJYGflTDnELAlIaUUpRoFUu+aBZHQJsCy4wyqMp1fZQoaAZoCWgPQwixiGGHMQkMwJSGlFKUaBVLxGgWR0CbBfKQq7ROdX2UKGgGaAloD0MIJR+7C5QTXkCUhpRSlGgVTegDaBZHQJsJo3R5TqB1fZQoaAZoCWgPQwj99QoL7gs7QJSGlFKUaBVL8WgWR0CbC1STQmeEdX2UKGgGaAloD0MIzNQkeEOjXkCUhpRSlGgVTegDaBZHQJsVtIqbz9V1fZQoaAZoCWgPQwgPCkrRStBiQJSGlFKUaBVN6ANoFkdAmxkRSYPXkHV9lChoBmgJaA9DCEZEMXmDYGJAlIaUUpRoFU3oA2gWR0CbHZz7uUlidX2UKGgGaAloD0MIW+m12VhjY0CUhpRSlGgVTegDaBZHQJsg8yqMm4R1fZQoaAZoCWgPQwitiJrocwNjQJSGlFKUaBVN6ANoFkdAmyvi9ytFKHV9lChoBmgJaA9DCBUcXhCRdl5AlIaUUpRoFU3oA2gWR0CbLLGOMl1KdX2UKGgGaAloD0MIe/SG+0g8YkCUhpRSlGgVTegDaBZHQJtCApAlfJF1fZQoaAZoCWgPQwhuwygIHo5iQJSGlFKUaBVN6ANoFkdAm0Q8pkPMCHV9lChoBmgJaA9DCEbPLXQlSlVAlIaUUpRoFU3oA2gWR0CbSYmoR7JGdX2UKGgGaAloD0MI2zF1V3bCXECUhpRSlGgVTegDaBZHQJtJpYaHbh51fZQoaAZoCWgPQwhUxyqlZ/VcQJSGlFKUaBVN6ANoFkdAm0qaPwNLDnV9lChoBmgJaA9DCFMkXwmkvDFAlIaUUpRoFUvDaBZHQJtPqwUxmCl1fZQoaAZoCWgPQwgZraOqCSBjQJSGlFKUaBVN6ANoFkdAm1I8H8jzI3V9lChoBmgJaA9DCDyDhv4JblxAlIaUUpRoFU3oA2gWR0CbWryTY/VzdX2UKGgGaAloD0MIiQtAo3SZHcCUhpRSlGgVS7xoFkdAm10f24/eL3V9lChoBmgJaA9DCGdg5GVNEF9AlIaUUpRoFU3oA2gWR0CbXeXDWK/EdX2UKGgGaAloD0MIzPCfbqAJXcCUhpRSlGgVTT4BaBZHQJtfuvLX+VF1fZQoaAZoCWgPQwhM/FHUmU9eQJSGlFKUaBVN6ANoFkdAm2EnKnvUjXV9lChoBmgJaA9DCAMjL2tiCVxAlIaUUpRoFU3oA2gWR0CbYrAo5PuYdX2UKGgGaAloD0MI226CbxqkY0CUhpRSlGgVTV8CaBZHQJtjtsTFl051fZQoaAZoCWgPQwj+DG/W4K0jwJSGlFKUaBVLymgWR0CbalhnrY5DdX2UKGgGaAloD0MIT83lBkMSWECUhpRSlGgVTegDaBZHQJtrRVDKHO91fZQoaAZoCWgPQwgfD313K6BhQJSGlFKUaBVN6ANoFkdAm24XIyTINnV9lChoBmgJaA9DCFWkwthCcBrAlIaUUpRoFUvPaBZHQJtuq3gDRtx1fZQoaAZoCWgPQwjDZRU2A8xfQJSGlFKUaBVN6ANoFkdAm3H7C3w1BXV9lChoBmgJaA9DCJ+u7ljs+mVAlIaUUpRoFU3oA2gWR0CbdOHVwxWUdX2UKGgGaAloD0MIstR6v9FeGcCUhpRSlGgVS+hoFkdAm3pOnAIppnV9lChoBmgJaA9DCMdl3NRA1lhAlIaUUpRoFU3oA2gWR0Cbf0Kyv9tNdX2UKGgGaAloD0MIfNRfr7C8XUCUhpRSlGgVTegDaBZHQJuXRM+NcW11fZQoaAZoCWgPQwhP6zao/URCQJSGlFKUaBVL22gWR0Cbl8oJzDGcdX2UKGgGaAloD0MIhdBBl3A4VkCUhpRSlGgVTegDaBZHQJudN8pkPMB1fZQoaAZoCWgPQwh08ExoEjdiQJSGlFKUaBVN6ANoFkdAm5535rP+oHV9lChoBmgJaA9DCMy4qYHmfWBAlIaUUpRoFU3oA2gWR0Cbp6ruYx+KdX2UKGgGaAloD0MIOEnzx7QiYECUhpRSlGgVTegDaBZHQJuyZG9YfXB1fZQoaAZoCWgPQwh3K0t0lg5ZQJSGlFKUaBVN6ANoFkdAm7Y3y/bj+HV9lChoBmgJaA9DCIkl5e5zD1lAlIaUUpRoFU3oA2gWR0CbuKQdjoZAdX2UKGgGaAloD0MIEvjDz3/fYUCUhpRSlGgVTdwCaBZHQJu5RqrR0EJ1fZQoaAZoCWgPQwiL+bmhKfBaQJSGlFKUaBVN6ANoFkdAm7xN5+pfhXV9lChoBmgJaA9DCNnO91PjE2NAlIaUUpRoFU3oA2gWR0Cbva3EyckMdX2UKGgGaAloD0MImbfqOlT5RkCUhpRSlGgVS61oFkdAm8DelO45LnV9lChoBmgJaA9DCGlwW1t4G2FAlIaUUpRoFU3oA2gWR0Cbxo4W1twadX2UKGgGaAloD0MI2xMktrt3XkCUhpRSlGgVTegDaBZHQJvJ2NMoMKF1fZQoaAZoCWgPQwjO34RCBH1aQJSGlFKUaBVN6ANoFkdAm8pzeoDPnnV9lChoBmgJaA9DCMnogCTseyNAlIaUUpRoFUvlaBZHQJvKhjvuw5h1fZQoaAZoCWgPQwjUgaynVoFZQJSGlFKUaBVN6ANoFkdAm9B/4ZdfLXV9lChoBmgJaA9DCCOD3EWYPl5AlIaUUpRoFU3oA2gWR0Cb23fAbhm5dX2UKGgGaAloD0MIpYXLKmw6PECUhpRSlGgVS7FoFkdAm93WNzbN8nV9lChoBmgJaA9DCAZ/v5gte1pAlIaUUpRoFU3oA2gWR0Cb88n13+uOdX2UKGgGaAloD0MIeVvptdn3WkCUhpRSlGgVTegDaBZHQJv0UI7eVLV1fZQoaAZoCWgPQwiLqfQTzrNeQJSGlFKUaBVN6ANoFkdAm/lPLDAJs3V9lChoBmgJaA9DCKJfWz99e2JAlIaUUpRoFU3oA2gWR0Cb+nKTSsr/dX2UKGgGaAloD0MIsaayKOy6J0CUhpRSlGgVS59oFkdAnAAUKiO/+XV9lChoBmgJaA9DCHKJIw9EL2FAlIaUUpRoFU3oA2gWR0CcAvvpQk5ZdX2UKGgGaAloD0MIQ6m9iLYUZUCUhpRSlGgVTegDaBZHQJwP21LJ0XB1fZQoaAZoCWgPQwgo8iTpGhBkQJSGlFKUaBVN6ANoFkdAnBLDwYtQK3V9lChoBmgJaA9DCJEKYwvBCmFAlIaUUpRoFU3oA2gWR0CcFbtKZlWfdX2UKGgGaAloD0MIGvonuNglYUCUhpRSlGgVTegDaBZHQJwXA8+zMRp1fZQoaAZoCWgPQwgGobyPo6JjQJSGlFKUaBVN6ANoFkdAnBoxS9/SY3V9lChoBmgJaA9DCBMro5HPmx3AlIaUUpRoFUvCaBZHQJwerl+3H7x1fZQoaAZoCWgPQwit9rAXCv1dQJSGlFKUaBVN6ANoFkdAnB+LpNbkfnV9lChoBmgJaA9DCM+EJoklYV1AlIaUUpRoFU3oA2gWR0CcIoYvnKW+dX2UKGgGaAloD0MIpHITtTR+YECUhpRSlGgVTegDaBZHQJwjE/zJ6pp1fZQoaAZoCWgPQwg7N23G6YBiQJSGlFKUaBVN6ANoFkdAnCMneBQN1HV9lChoBmgJaA9DCPkUAOMZ3EBAlIaUUpRoFUuoaBZHQJwjLn7pFCt1fZQoaAZoCWgPQwiSXWkZqRM4QJSGlFKUaBVLmGgWR0CcLPqbBoEkdX2UKGgGaAloD0MIc0f/y7VYMkCUhpRSlGgVS6hoFkdAnC2RwAEMb3V9lChoBmgJaA9DCKj+QSTDqmFAlIaUUpRoFU3oA2gWR0CcM4JtSAH3dX2UKGgGaAloD0MIvVXXoZoxXkCUhpRSlGgVTegDaBZHQJw1vjQzDXR1fZQoaAZoCWgPQwg2HQHcLOYkQJSGlFKUaBVLu2gWR0CcR44oZydXdX2UKGgGaAloD0MIdxTnqCMmZECUhpRSlGgVTegDaBZHQJxK9WMju8d1fZQoaAZoCWgPQwhb7swEw6VhQJSGlFKUaBVN6ANoFkdAnFCg+EAYHnV9lChoBmgJaA9DCD3uW60TG2BAlIaUUpRoFU3oA2gWR0CcUcy+Yc//dX2UKGgGaAloD0MIOzYC8botUUCUhpRSlGgVTegDaBZHQJxXZUwSJ0p1fZQoaAZoCWgPQwixiGGHMZEtwJSGlFKUaBVL5GgWR0CcWNBQvYe1dX2UKGgGaAloD0MIyAxUxj9hY0CUhpRSlGgVTegDaBZHQJxZ/WpZOi51fZQoaAZoCWgPQwif46PFGeFBQJSGlFKUaBVLn2gWR0CcYrEdeY2LdX2UKGgGaAloD0MIfHvXoC/VXkCUhpRSlGgVTegDaBZHQJxofilzltF1fZQoaAZoCWgPQwiK6NfWT7daQJSGlFKUaBVN6ANoFkdAnGtigTRIBnV9lChoBmgJaA9DCJ9VZkprV2BAlIaUUpRoFU3oA2gWR0CccAugHu7ZdX2UKGgGaAloD0MIWDuKc9SeWkCUhpRSlGgVTegDaBZHQJx04jB2wFF1fZQoaAZoCWgPQwiVLCehdPpgQJSGlFKUaBVN6ANoFkdAnHXRCD28I3V9lChoBmgJaA9DCHY4ukp31+2/lIaUUpRoFUuXaBZHQJx2+qxTsIF1fZQoaAZoCWgPQwgOEqJ8QT5fQJSGlFKUaBVN6ANoFkdAnHlYJE6T4nV9lChoBmgJaA9DCB11dFyN9WBAlIaUUpRoFU3oA2gWR0CceWLncL0BdX2UKGgGaAloD0MIodgKmpagQcCUhpRSlGgVS+loFkdAnIDF8LKFI3V9lChoBmgJaA9DCKcC7nn+32BAlIaUUpRoFU3oA2gWR0CchHk7OmiydX2UKGgGaAloD0MI5WGh1jRqYkCUhpRSlGgVTegDaBZHQJyKQNOM2m51fZQoaAZoCWgPQwhTzhd7L6NdQJSGlFKUaBVN6ANoFkdAnIyAVj7Q9nVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ce00f781fd5e0ad087509e2cf226ac9ed35ca0e44111bec2fe3a70f1d9d5d20
|
3 |
+
size 84573
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec9335e8878a9515a52492593324a4f54a1788f8a6923b2e4fefa860c6e4ebd8
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ea33a6f809fdd2c61ec631518b2f1eea77d3e5f37465539b2a789a1e4684695
|
3 |
+
size 257543
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 223.50543600612497, "std_reward": 38.67487050749196, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T20:28:13.377155"}
|