legraphista
commited on
Commit
•
d1d8b22
1
Parent(s):
23393f2
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +165 -0
imatrix.log
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
main: build = 3010 (95f84d5c)
|
2 |
+
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
3 |
+
main: seed = 1716905720
|
4 |
+
llama_model_loader: loaded meta data with 27 key-value pairs and 291 tensors from AutoCoder_S_6.7B-IMat-GGUF/AutoCoder_S_6.7B.gguf (version GGUF V3 (latest))
|
5 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
6 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
7 |
+
llama_model_loader: - kv 1: general.name str = AutoCoder_S_6.7B
|
8 |
+
llama_model_loader: - kv 2: llama.block_count u32 = 32
|
9 |
+
llama_model_loader: - kv 3: llama.context_length u32 = 16384
|
10 |
+
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
|
11 |
+
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008
|
12 |
+
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
|
13 |
+
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 32
|
14 |
+
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 100000.000000
|
15 |
+
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
|
16 |
+
llama_model_loader: - kv 10: general.file_type u32 = 0
|
17 |
+
llama_model_loader: - kv 11: llama.vocab_size u32 = 32256
|
18 |
+
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
|
19 |
+
llama_model_loader: - kv 13: llama.rope.scaling.type str = linear
|
20 |
+
llama_model_loader: - kv 14: llama.rope.scaling.factor f32 = 4.000000
|
21 |
+
llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2
|
22 |
+
llama_model_loader: - kv 16: tokenizer.ggml.pre str = deepseek-coder
|
23 |
+
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,32256] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
24 |
+
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,32256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
25 |
+
llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,31757] = ["Ġ Ġ", "Ġ t", "Ġ a", "i n", "h e...
|
26 |
+
llama_model_loader: - kv 20: tokenizer.ggml.bos_token_id u32 = 32013
|
27 |
+
llama_model_loader: - kv 21: tokenizer.ggml.eos_token_id u32 = 32021
|
28 |
+
llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 32014
|
29 |
+
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = true
|
30 |
+
llama_model_loader: - kv 24: tokenizer.ggml.add_eos_token bool = false
|
31 |
+
llama_model_loader: - kv 25: tokenizer.chat_template str = {% if messages[0]['role'] == 'system'...
|
32 |
+
llama_model_loader: - kv 26: general.quantization_version u32 = 2
|
33 |
+
llama_model_loader: - type f32: 291 tensors
|
34 |
+
llm_load_vocab: mismatch in special tokens definition ( 243/32256 vs 256/32256 ).
|
35 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
36 |
+
llm_load_print_meta: arch = llama
|
37 |
+
llm_load_print_meta: vocab type = BPE
|
38 |
+
llm_load_print_meta: n_vocab = 32256
|
39 |
+
llm_load_print_meta: n_merges = 31757
|
40 |
+
llm_load_print_meta: n_ctx_train = 16384
|
41 |
+
llm_load_print_meta: n_embd = 4096
|
42 |
+
llm_load_print_meta: n_head = 32
|
43 |
+
llm_load_print_meta: n_head_kv = 32
|
44 |
+
llm_load_print_meta: n_layer = 32
|
45 |
+
llm_load_print_meta: n_rot = 128
|
46 |
+
llm_load_print_meta: n_embd_head_k = 128
|
47 |
+
llm_load_print_meta: n_embd_head_v = 128
|
48 |
+
llm_load_print_meta: n_gqa = 1
|
49 |
+
llm_load_print_meta: n_embd_k_gqa = 4096
|
50 |
+
llm_load_print_meta: n_embd_v_gqa = 4096
|
51 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
52 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
53 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
54 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
55 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
56 |
+
llm_load_print_meta: n_ff = 11008
|
57 |
+
llm_load_print_meta: n_expert = 0
|
58 |
+
llm_load_print_meta: n_expert_used = 0
|
59 |
+
llm_load_print_meta: causal attn = 1
|
60 |
+
llm_load_print_meta: pooling type = 0
|
61 |
+
llm_load_print_meta: rope type = 0
|
62 |
+
llm_load_print_meta: rope scaling = linear
|
63 |
+
llm_load_print_meta: freq_base_train = 100000.0
|
64 |
+
llm_load_print_meta: freq_scale_train = 0.25
|
65 |
+
llm_load_print_meta: n_yarn_orig_ctx = 16384
|
66 |
+
llm_load_print_meta: rope_finetuned = unknown
|
67 |
+
llm_load_print_meta: ssm_d_conv = 0
|
68 |
+
llm_load_print_meta: ssm_d_inner = 0
|
69 |
+
llm_load_print_meta: ssm_d_state = 0
|
70 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
71 |
+
llm_load_print_meta: model type = 7B
|
72 |
+
llm_load_print_meta: model ftype = all F32
|
73 |
+
llm_load_print_meta: model params = 6.74 B
|
74 |
+
llm_load_print_meta: model size = 25.11 GiB (32.00 BPW)
|
75 |
+
llm_load_print_meta: general.name = AutoCoder_S_6.7B
|
76 |
+
llm_load_print_meta: BOS token = 32013 '<|begin▁of▁sentence|>'
|
77 |
+
llm_load_print_meta: EOS token = 32021 '<|EOT|>'
|
78 |
+
llm_load_print_meta: PAD token = 32014 '<|end▁of▁sentence|>'
|
79 |
+
llm_load_print_meta: LF token = 126 'Ä'
|
80 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
81 |
+
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
|
82 |
+
ggml_cuda_init: found 1 CUDA devices:
|
83 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
84 |
+
llm_load_tensors: ggml ctx size = 0.30 MiB
|
85 |
+
llm_load_tensors: offloading 29 repeating layers to GPU
|
86 |
+
llm_load_tensors: offloaded 29/33 layers to GPU
|
87 |
+
llm_load_tensors: CPU buffer size = 25713.02 MiB
|
88 |
+
llm_load_tensors: CUDA0 buffer size = 22388.91 MiB
|
89 |
+
...................................................................................................
|
90 |
+
llama_new_context_with_model: n_ctx = 512
|
91 |
+
llama_new_context_with_model: n_batch = 512
|
92 |
+
llama_new_context_with_model: n_ubatch = 512
|
93 |
+
llama_new_context_with_model: flash_attn = 0
|
94 |
+
llama_new_context_with_model: freq_base = 100000.0
|
95 |
+
llama_new_context_with_model: freq_scale = 0.25
|
96 |
+
llama_kv_cache_init: CUDA_Host KV buffer size = 24.00 MiB
|
97 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 232.00 MiB
|
98 |
+
llama_new_context_with_model: KV self size = 256.00 MiB, K (f16): 128.00 MiB, V (f16): 128.00 MiB
|
99 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.12 MiB
|
100 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 575.00 MiB
|
101 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 17.01 MiB
|
102 |
+
llama_new_context_with_model: graph nodes = 1030
|
103 |
+
llama_new_context_with_model: graph splits = 37
|
104 |
+
|
105 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
106 |
+
compute_imatrix: tokenizing the input ..
|
107 |
+
compute_imatrix: tokenization took 394.173 ms
|
108 |
+
compute_imatrix: computing over 236 chunks with batch_size 512
|
109 |
+
compute_imatrix: 1.41 seconds per pass - ETA 5.53 minutes
|
110 |
+
[1]6.9711,[2]5.6324,[3]5.7695,[4]6.9482,[5]7.1003,[6]6.8935,[7]6.0051,[8]6.8299,[9]6.5963,
|
111 |
+
save_imatrix: stored collected data after 10 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
112 |
+
[10]7.4973,[11]7.8150,[12]7.6111,[13]8.2735,[14]7.5730,[15]8.4049,[16]8.5410,[17]8.9150,[18]9.0491,[19]9.3996,
|
113 |
+
save_imatrix: stored collected data after 20 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
114 |
+
[20]9.1504,[21]9.4010,[22]9.2047,[23]8.7323,[24]8.8343,[25]8.2072,[26]7.7374,[27]7.4032,[28]7.2794,[29]7.3243,
|
115 |
+
save_imatrix: stored collected data after 30 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
116 |
+
[30]7.4102,[31]7.5618,[32]7.7531,[33]8.0081,[34]7.8609,[35]7.4665,[36]7.1310,[37]7.0749,[38]7.0595,[39]7.0472,
|
117 |
+
save_imatrix: stored collected data after 40 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
118 |
+
[40]7.0351,[41]7.1613,[42]7.3376,[43]7.4777,[44]7.7039,[45]7.6982,[46]7.8623,[47]8.0818,[48]8.2927,[49]8.5157,
|
119 |
+
save_imatrix: stored collected data after 50 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
120 |
+
[50]8.6643,[51]8.5805,[52]8.4288,[53]8.2782,[54]8.1212,[55]8.2830,[56]8.3925,[57]8.4649,[58]8.6312,[59]8.6761,
|
121 |
+
save_imatrix: stored collected data after 60 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
122 |
+
[60]8.8491,[61]9.0009,[62]9.1895,[63]9.3434,[64]9.4736,[65]9.5979,[66]9.6884,[67]9.8557,[68]9.9761,[69]10.0247,
|
123 |
+
save_imatrix: stored collected data after 70 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
124 |
+
[70]10.0730,[71]9.9550,[72]9.9019,[73]9.8934,[74]9.8477,[75]9.8404,[76]9.8001,[77]9.7517,[78]9.6413,[79]9.5902,
|
125 |
+
save_imatrix: stored collected data after 80 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
126 |
+
[80]9.5973,[81]9.5626,[82]9.6427,[83]9.7263,[84]9.8151,[85]9.6581,[86]9.6787,[87]9.6081,[88]9.6448,[89]9.7148,
|
127 |
+
save_imatrix: stored collected data after 90 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
128 |
+
[90]9.7689,[91]9.8819,[92]9.9310,[93]10.0121,[94]10.0795,[95]10.0701,[96]10.0096,[97]10.0003,[98]10.0176,[99]10.0750,
|
129 |
+
save_imatrix: stored collected data after 100 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
130 |
+
[100]10.1176,[101]10.1105,[102]10.1082,[103]10.0825,[104]10.0619,[105]10.0554,[106]10.0109,[107]9.9972,[108]9.9992,[109]9.9618,
|
131 |
+
save_imatrix: stored collected data after 110 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
132 |
+
[110]9.9424,[111]9.9028,[112]9.9015,[113]9.8885,[114]9.8615,[115]9.8325,[116]9.8164,[117]9.8120,[118]9.7936,[119]9.7131,
|
133 |
+
save_imatrix: stored collected data after 120 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
134 |
+
[120]9.7549,[121]9.7954,[122]9.8028,[123]9.7688,[124]9.7939,[125]9.8058,[126]9.7924,[127]9.7033,[128]9.7055,[129]9.7133,
|
135 |
+
save_imatrix: stored collected data after 130 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
136 |
+
[130]9.6597,[131]9.6724,[132]9.5981,[133]9.5206,[134]9.4413,[135]9.3635,[136]9.2893,[137]9.2113,[138]9.1416,[139]9.0679,
|
137 |
+
save_imatrix: stored collected data after 140 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
138 |
+
[140]9.0140,[141]8.9418,[142]8.8786,[143]8.8081,[144]8.7210,[145]8.6630,[146]8.6062,[147]8.5428,[148]8.4765,[149]8.4173,
|
139 |
+
save_imatrix: stored collected data after 150 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
140 |
+
[150]8.3599,[151]8.2933,[152]8.2349,[153]8.1789,[154]8.1178,[155]8.0694,[156]8.0121,[157]7.9777,[158]7.9050,[159]7.8430,
|
141 |
+
save_imatrix: stored collected data after 160 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
142 |
+
[160]7.8331,[161]7.8808,[162]7.9044,[163]7.9540,[164]8.0023,[165]7.9800,[166]8.0035,[167]7.9998,[168]7.9850,[169]7.9934,
|
143 |
+
save_imatrix: stored collected data after 170 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
144 |
+
[170]7.9962,[171]8.0055,[172]7.9904,[173]8.0206,[174]8.0128,[175]8.0323,[176]8.0310,[177]8.0447,[178]8.0503,[179]8.0647,
|
145 |
+
save_imatrix: stored collected data after 180 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
146 |
+
[180]8.0664,[181]8.0854,[182]8.1037,[183]8.1084,[184]8.1318,[185]8.1649,[186]8.2033,[187]8.2198,[188]8.2490,[189]8.2654,
|
147 |
+
save_imatrix: stored collected data after 190 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
148 |
+
[190]8.2910,[191]8.3175,[192]8.3504,[193]8.3763,[194]8.3824,[195]8.4359,[196]8.4523,[197]8.4449,[198]8.5025,[199]8.5595,
|
149 |
+
save_imatrix: stored collected data after 200 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
150 |
+
[200]8.6122,[201]8.6825,[202]8.7286,[203]8.7456,[204]8.7602,[205]8.7219,[206]8.7232,[207]8.7519,[208]8.7948,[209]8.8008,
|
151 |
+
save_imatrix: stored collected data after 210 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
152 |
+
[210]8.8094,[211]8.8229,[212]8.8434,[213]8.8669,[214]8.8710,[215]8.8792,[216]8.8937,[217]8.9263,[218]8.9901,[219]8.9619,
|
153 |
+
save_imatrix: stored collected data after 220 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
154 |
+
[220]8.9730,[221]8.9575,[222]8.9700,[223]8.9656,[224]8.9616,[225]8.9832,[226]8.9590,[227]8.9759,[228]8.9843,[229]9.0451,
|
155 |
+
save_imatrix: stored collected data after 230 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
156 |
+
[230]9.1160,[231]9.1884,[232]9.2569,[233]9.3015,[234]9.2740,[235]9.2473,[236]9.2192,
|
157 |
+
save_imatrix: stored collected data after 236 chunks in AutoCoder_S_6.7B-IMat-GGUF/imatrix.dat
|
158 |
+
|
159 |
+
llama_print_timings: load time = 4638.76 ms
|
160 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
161 |
+
llama_print_timings: prompt eval time = 291757.04 ms / 120832 tokens ( 2.41 ms per token, 414.15 tokens per second)
|
162 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
163 |
+
llama_print_timings: total time = 300310.61 ms / 120833 tokens
|
164 |
+
|
165 |
+
Final estimate: PPL = 9.2192 +/- 0.10306
|