legraphista
commited on
Commit
•
3c931d6
1
Parent(s):
cf02d73
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +147 -0
imatrix.log
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama_model_loader: loaded meta data with 29 key-value pairs and 292 tensors from Meta-Llama-3.1-8B-Instruct-IMat-GGUF/Meta-Llama-3.1-8B-Instruct.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
|
2 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
4 |
+
llama_model_loader: - kv 1: general.type str = model
|
5 |
+
llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 8B Instruct
|
6 |
+
llama_model_loader: - kv 3: general.finetune str = Instruct
|
7 |
+
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
|
8 |
+
llama_model_loader: - kv 5: general.size_label str = 8B
|
9 |
+
llama_model_loader: - kv 6: general.license str = llama3.1
|
10 |
+
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
|
11 |
+
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
|
12 |
+
llama_model_loader: - kv 9: llama.block_count u32 = 32
|
13 |
+
llama_model_loader: - kv 10: llama.context_length u32 = 131072
|
14 |
+
llama_model_loader: - kv 11: llama.embedding_length u32 = 4096
|
15 |
+
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 14336
|
16 |
+
llama_model_loader: - kv 13: llama.attention.head_count u32 = 32
|
17 |
+
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
|
18 |
+
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
|
19 |
+
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
|
20 |
+
llama_model_loader: - kv 17: general.file_type u32 = 7
|
21 |
+
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
|
22 |
+
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
|
23 |
+
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
|
24 |
+
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
|
25 |
+
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
26 |
+
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
27 |
+
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
|
28 |
+
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
|
29 |
+
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
|
30 |
+
llama_model_loader: - kv 27: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
|
31 |
+
llama_model_loader: - kv 28: general.quantization_version u32 = 2
|
32 |
+
llama_model_loader: - type f32: 66 tensors
|
33 |
+
llama_model_loader: - type q8_0: 226 tensors
|
34 |
+
llm_load_vocab: special tokens cache size = 256
|
35 |
+
llm_load_vocab: token to piece cache size = 0.7999 MB
|
36 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
37 |
+
llm_load_print_meta: arch = llama
|
38 |
+
llm_load_print_meta: vocab type = BPE
|
39 |
+
llm_load_print_meta: n_vocab = 128256
|
40 |
+
llm_load_print_meta: n_merges = 280147
|
41 |
+
llm_load_print_meta: vocab_only = 0
|
42 |
+
llm_load_print_meta: n_ctx_train = 131072
|
43 |
+
llm_load_print_meta: n_embd = 4096
|
44 |
+
llm_load_print_meta: n_layer = 32
|
45 |
+
llm_load_print_meta: n_head = 32
|
46 |
+
llm_load_print_meta: n_head_kv = 8
|
47 |
+
llm_load_print_meta: n_rot = 128
|
48 |
+
llm_load_print_meta: n_swa = 0
|
49 |
+
llm_load_print_meta: n_embd_head_k = 128
|
50 |
+
llm_load_print_meta: n_embd_head_v = 128
|
51 |
+
llm_load_print_meta: n_gqa = 4
|
52 |
+
llm_load_print_meta: n_embd_k_gqa = 1024
|
53 |
+
llm_load_print_meta: n_embd_v_gqa = 1024
|
54 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
55 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
56 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
57 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
58 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
59 |
+
llm_load_print_meta: n_ff = 14336
|
60 |
+
llm_load_print_meta: n_expert = 0
|
61 |
+
llm_load_print_meta: n_expert_used = 0
|
62 |
+
llm_load_print_meta: causal attn = 1
|
63 |
+
llm_load_print_meta: pooling type = 0
|
64 |
+
llm_load_print_meta: rope type = 0
|
65 |
+
llm_load_print_meta: rope scaling = linear
|
66 |
+
llm_load_print_meta: freq_base_train = 500000.0
|
67 |
+
llm_load_print_meta: freq_scale_train = 1
|
68 |
+
llm_load_print_meta: n_ctx_orig_yarn = 131072
|
69 |
+
llm_load_print_meta: rope_finetuned = unknown
|
70 |
+
llm_load_print_meta: ssm_d_conv = 0
|
71 |
+
llm_load_print_meta: ssm_d_inner = 0
|
72 |
+
llm_load_print_meta: ssm_d_state = 0
|
73 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
74 |
+
llm_load_print_meta: model type = 8B
|
75 |
+
llm_load_print_meta: model ftype = Q8_0
|
76 |
+
llm_load_print_meta: model params = 8.03 B
|
77 |
+
llm_load_print_meta: model size = 7.95 GiB (8.50 BPW)
|
78 |
+
llm_load_print_meta: general.name = Meta Llama 3.1 8B Instruct
|
79 |
+
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
|
80 |
+
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
|
81 |
+
llm_load_print_meta: LF token = 128 'Ä'
|
82 |
+
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
|
83 |
+
llm_load_print_meta: max token length = 256
|
84 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
85 |
+
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
86 |
+
ggml_cuda_init: found 1 CUDA devices:
|
87 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
88 |
+
llm_load_tensors: ggml ctx size = 0.27 MiB
|
89 |
+
llm_load_tensors: offloading 32 repeating layers to GPU
|
90 |
+
llm_load_tensors: offloading non-repeating layers to GPU
|
91 |
+
llm_load_tensors: offloaded 33/33 layers to GPU
|
92 |
+
llm_load_tensors: CPU buffer size = 532.31 MiB
|
93 |
+
llm_load_tensors: CUDA0 buffer size = 7605.34 MiB
|
94 |
+
.........................................................................................
|
95 |
+
llama_new_context_with_model: n_ctx = 512
|
96 |
+
llama_new_context_with_model: n_batch = 512
|
97 |
+
llama_new_context_with_model: n_ubatch = 512
|
98 |
+
llama_new_context_with_model: flash_attn = 0
|
99 |
+
llama_new_context_with_model: freq_base = 500000.0
|
100 |
+
llama_new_context_with_model: freq_scale = 1
|
101 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 64.00 MiB
|
102 |
+
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
|
103 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
|
104 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 258.50 MiB
|
105 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
|
106 |
+
llama_new_context_with_model: graph nodes = 1030
|
107 |
+
llama_new_context_with_model: graph splits = 2
|
108 |
+
|
109 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
110 |
+
compute_imatrix: tokenizing the input ..
|
111 |
+
compute_imatrix: tokenization took 40.567 ms
|
112 |
+
compute_imatrix: computing over 125 chunks with batch_size 512
|
113 |
+
compute_imatrix: 0.67 seconds per pass - ETA 1.40 minutes
|
114 |
+
[1]5.6450,[2]4.4702,[3]4.0740,[4]5.0229,[5]5.2037,[6]4.4021,[7]4.6701,[8]5.1378,[9]5.3205,
|
115 |
+
save_imatrix: stored collected data after 10 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
116 |
+
[10]4.8485,[11]5.2853,[12]5.7849,[13]6.2502,[14]6.6483,[15]6.9530,[16]7.2090,[17]7.3963,[18]7.1322,[19]6.8074,
|
117 |
+
save_imatrix: stored collected data after 20 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
118 |
+
[20]6.7943,[21]6.9043,[22]6.8396,[23]7.1398,[24]7.1030,[25]7.4353,[26]7.4332,[27]7.4675,[28]7.7040,[29]7.7057,
|
119 |
+
save_imatrix: stored collected data after 30 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
120 |
+
[30]7.6655,[31]7.2633,[32]6.8970,[33]6.7255,[34]6.5763,[35]6.6251,[36]6.6641,[37]6.5966,[38]6.6691,[39]6.8314,
|
121 |
+
save_imatrix: stored collected data after 40 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
122 |
+
[40]6.9164,[41]6.9534,[42]7.0537,[43]7.2634,[44]7.3427,[45]7.5240,[46]7.4093,[47]7.5276,[48]7.6077,[49]7.7031,
|
123 |
+
save_imatrix: stored collected data after 50 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
124 |
+
[50]7.5974,[51]7.6994,[52]7.8264,[53]7.9057,[54]7.9634,[55]8.0354,[56]8.0725,[57]8.1231,[58]8.1399,[59]8.1486,
|
125 |
+
save_imatrix: stored collected data after 60 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
126 |
+
[60]8.1036,[61]8.0840,[62]8.1257,[63]8.1674,[64]8.0841,[65]8.0472,[66]8.0453,[67]8.0126,[68]7.9960,[69]7.9754,
|
127 |
+
save_imatrix: stored collected data after 70 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
128 |
+
[70]7.9684,[71]7.9568,[72]7.9475,[73]7.9085,[74]7.8517,[75]7.8432,[76]7.8412,[77]7.7991,[78]7.7869,[79]7.8144,
|
129 |
+
save_imatrix: stored collected data after 80 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
130 |
+
[80]7.8355,[81]7.8187,[82]7.8068,[83]7.8325,[84]7.7284,[85]7.7280,[86]7.7349,[87]7.7448,[88]7.7729,[89]7.7736,
|
131 |
+
save_imatrix: stored collected data after 90 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
132 |
+
[90]7.7163,[91]7.6404,[92]7.5762,[93]7.5210,[94]7.4600,[95]7.4064,[96]7.3665,[97]7.3742,[98]7.4158,[99]7.5038,
|
133 |
+
save_imatrix: stored collected data after 100 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
134 |
+
[100]7.5790,[101]7.6302,[102]7.7523,[103]7.7770,[104]7.8144,[105]7.7421,[106]7.7473,[107]7.6992,[108]7.6483,[109]7.5837,
|
135 |
+
save_imatrix: stored collected data after 110 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
136 |
+
[110]7.6274,[111]7.6830,[112]7.6914,[113]7.6846,[114]7.7188,[115]7.7524,[116]7.7605,[117]7.7820,[118]7.8124,[119]7.7604,
|
137 |
+
save_imatrix: stored collected data after 120 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
138 |
+
[120]7.7775,[121]7.7835,[122]7.8095,[123]7.8550,[124]7.8913,[125]7.9140,
|
139 |
+
save_imatrix: stored collected data after 125 chunks in Meta-Llama-3.1-8B-Instruct-IMat-GGUF/imatrix.dat
|
140 |
+
|
141 |
+
llama_print_timings: load time = 2039.67 ms
|
142 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
143 |
+
llama_print_timings: prompt eval time = 71215.49 ms / 64000 tokens ( 1.11 ms per token, 898.68 tokens per second)
|
144 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
145 |
+
llama_print_timings: total time = 73402.48 ms / 64001 tokens
|
146 |
+
|
147 |
+
Final estimate: PPL = 7.9140 +/- 0.11223
|