legraphista's picture
Upload imatrix.log with huggingface_hub
f2b6c73 verified
raw
history blame
12.2 kB
llama_model_loader: loaded meta data with 32 key-value pairs and 628 tensors from granite-20b-code-instruct-IMat-GGUF/granite-20b-code-instruct.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = starcoder
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Granite 20b Code Instruct
llama_model_loader: - kv 3: general.finetune str = code-instruct
llama_model_loader: - kv 4: general.basename str = granite
llama_model_loader: - kv 5: general.size_label str = 20B
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Granite 20b Code Base
llama_model_loader: - kv 9: general.base_model.0.organization str = Ibm Granite
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/ibm-granite/gr...
llama_model_loader: - kv 11: general.tags arr[str,3] = ["code", "granite", "text-generation"]
llama_model_loader: - kv 12: general.datasets arr[str,8] = ["bigcode/commitpackft", "TIGER-Lab/M...
llama_model_loader: - kv 13: starcoder.context_length u32 = 8192
llama_model_loader: - kv 14: starcoder.embedding_length u32 = 6144
llama_model_loader: - kv 15: starcoder.feed_forward_length u32 = 24576
llama_model_loader: - kv 16: starcoder.block_count u32 = 52
llama_model_loader: - kv 17: starcoder.attention.head_count u32 = 48
llama_model_loader: - kv 18: starcoder.attention.head_count_kv u32 = 1
llama_model_loader: - kv 19: starcoder.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 20: general.file_type u32 = 7
llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 22: tokenizer.ggml.pre str = refact
llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,49152] = ["<|endoftext|>", "<fim_prefix>", "<f...
llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,49152] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,48891] = ["Ġ Ġ", "ĠĠ ĠĠ", "ĠĠĠĠ ĠĠ...
llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 0
llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 0
llama_model_loader: - kv 28: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 30: tokenizer.chat_template str = {% for message in messages %}\n{% if m...
llama_model_loader: - kv 31: general.quantization_version u32 = 2
llama_model_loader: - type f32: 419 tensors
llama_model_loader: - type q8_0: 209 tensors
llm_load_vocab: special tokens cache size = 19
llm_load_vocab: token to piece cache size = 0.2826 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = starcoder
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 49152
llm_load_print_meta: n_merges = 48891
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 6144
llm_load_print_meta: n_layer = 52
llm_load_print_meta: n_head = 48
llm_load_print_meta: n_head_kv = 1
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 48
llm_load_print_meta: n_embd_k_gqa = 128
llm_load_print_meta: n_embd_v_gqa = 128
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 24576
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 20.07 B
llm_load_print_meta: model size = 20.00 GiB (8.56 BPW)
llm_load_print_meta: general.name = Granite 20b Code Instruct
llm_load_print_meta: BOS token = 0 '<|endoftext|>'
llm_load_print_meta: EOS token = 0 '<|endoftext|>'
llm_load_print_meta: UNK token = 0 '<|endoftext|>'
llm_load_print_meta: PAD token = 0 '<|endoftext|>'
llm_load_print_meta: LF token = 145 'Ä'
llm_load_print_meta: EOT token = 0 '<|endoftext|>'
llm_load_print_meta: max token length = 512
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size = 0.55 MiB
llm_load_tensors: offloading 52 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 53/53 layers to GPU
llm_load_tensors: CPU buffer size = 498.00 MiB
llm_load_tensors: CUDA0 buffer size = 20292.38 MiB
....................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 13.00 MiB
llama_new_context_with_model: KV self size = 13.00 MiB, K (f16): 6.50 MiB, V (f16): 6.50 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.19 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 120.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 25.01 MiB
llama_new_context_with_model: graph nodes = 1933
llama_new_context_with_model: graph splits = 2
system_info: n_threads = 25 (n_threads_batch = 25) / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 113.128 ms
compute_imatrix: computing over 152 chunks with batch_size 512
compute_imatrix: 1.30 seconds per pass - ETA 3.28 minutes
[1]5.5316,[2]4.3038,[3]4.5649,[4]5.0288,[5]5.6039,[6]5.7152,[7]5.0016,[8]5.9597,[9]5.9637,
save_imatrix: stored collected data after 10 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[10]6.7819,[11]7.0343,[12]6.4546,[13]7.0672,[14]7.6034,[15]8.3912,[16]8.5493,[17]9.1657,[18]9.4702,[19]9.7523,
save_imatrix: stored collected data after 20 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[20]9.9486,[21]10.4114,[22]10.0740,[23]10.0213,[24]10.3530,[25]10.5995,[26]10.6331,[27]10.4010,[28]10.5028,[29]10.7926,
save_imatrix: stored collected data after 30 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[30]11.0959,[31]11.0268,[32]11.1389,[33]11.3398,[34]11.6580,[35]11.7255,[36]11.4972,[37]10.8076,[38]10.3152,[39]10.2085,
save_imatrix: stored collected data after 40 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[40]10.1415,[41]10.0520,[42]10.1053,[43]9.9861,[44]10.0245,[45]10.0257,[46]10.1471,[47]10.1358,[48]10.3092,[49]10.5322,
save_imatrix: stored collected data after 50 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[50]10.4987,[51]10.8835,[52]11.2237,[53]11.6686,[54]11.9040,[55]12.2365,[56]12.2093,[57]12.1756,[58]12.1845,[59]12.3144,
save_imatrix: stored collected data after 60 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[60]12.3865,[61]12.2209,[62]12.2149,[63]12.2819,[64]12.3703,[65]12.4174,[66]12.4922,[67]12.6439,[68]12.7639,[69]12.7716,
save_imatrix: stored collected data after 70 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[70]12.8490,[71]12.8158,[72]12.6971,[73]12.6002,[74]12.4168,[75]12.3231,[76]12.4371,[77]12.5235,[78]12.4813,[79]12.4734,
save_imatrix: stored collected data after 80 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[80]12.4798,[81]12.3699,[82]12.2741,[83]12.2127,[84]12.1877,[85]12.1598,[86]12.0773,[87]12.0180,[88]11.9234,[89]11.8501,
save_imatrix: stored collected data after 90 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[90]11.7759,[91]11.7479,[92]11.6583,[93]11.5726,[94]11.4962,[95]11.4289,[96]11.4031,[97]11.3468,[98]11.3321,[99]11.2733,
save_imatrix: stored collected data after 100 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[100]11.2175,[101]11.2073,[102]11.1154,[103]11.0428,[104]11.0297,[105]11.0836,[106]11.1179,[107]11.1815,[108]11.2633,[109]11.1341,
save_imatrix: stored collected data after 110 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[110]11.0276,[111]10.9195,[112]10.7971,[113]10.6767,[114]10.5720,[115]10.4712,[116]10.3728,[117]10.3827,[118]10.3708,[119]10.3970,
save_imatrix: stored collected data after 120 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[120]10.5022,[121]10.6177,[122]10.7352,[123]10.7968,[124]10.9187,[125]10.9587,[126]10.9877,[127]11.0106,[128]11.0613,[129]11.0879,
save_imatrix: stored collected data after 130 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[130]11.0612,[131]11.0532,[132]11.0083,[133]11.0206,[134]11.0336,[135]11.0436,[136]11.0618,[137]11.0628,[138]11.0782,[139]11.0803,
save_imatrix: stored collected data after 140 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[140]11.1238,[141]11.1233,[142]11.1360,[143]11.1245,[144]11.0680,[145]11.0480,[146]11.1301,[147]11.2386,[148]11.3118,[149]11.4027,
save_imatrix: stored collected data after 150 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
[150]11.4866,[151]11.5899,[152]11.6361,
save_imatrix: stored collected data after 152 chunks in granite-20b-code-instruct-IMat-GGUF/imatrix.dat
llama_print_timings: load time = 11508.22 ms
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: prompt eval time = 173482.28 ms / 77824 tokens ( 2.23 ms per token, 448.60 tokens per second)
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: total time = 184251.37 ms / 77825 tokens
Final estimate: PPL = 11.6361 +/- 0.19854