--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.9210439378923027 name: Precision - type: recall value: 0.9356751314464705 name: Recall - type: f1 value: 0.9283018867924528 name: F1 - type: accuracy value: 0.983176322938345 name: Accuracy --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9210 - Recall: 0.9357 - F1: 0.9283 - Accuracy: 0.9832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2341 | 1.0 | 878 | 0.0734 | 0.9118 | 0.9206 | 0.9162 | 0.9799 | | 0.0546 | 2.0 | 1756 | 0.0591 | 0.9210 | 0.9350 | 0.9279 | 0.9829 | | 0.0297 | 3.0 | 2634 | 0.0611 | 0.9210 | 0.9357 | 0.9283 | 0.9832 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0