leonvanbokhorst commited on
Commit
19f2328
·
verified ·
1 Parent(s): 34a695a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +13 -10
README.md CHANGED
@@ -19,20 +19,23 @@ model-index:
19
  type: topic-drift-detection
20
  name: Topic Drift Detection
21
  dataset:
22
- name: leonvanbokhorst/topic-drift
23
  type: conversations
24
  metrics:
25
  - name: Test RMSE
26
  type: rmse
27
- value: 0.0129
28
  - name: Test R²
29
  type: r2
30
- value: 0.8373
 
 
 
31
  ---
32
 
33
  # Topic Drift Detector Model
34
 
35
- ## Version: v20241225_090654
36
 
37
  This model detects topic drift in conversations using an enhanced attention-based architecture. Trained on the [leonvanbokhorst/topic-drift](https://huggingface.co/datasets/leonvanbokhorst/topic-drift) dataset.
38
 
@@ -47,18 +50,18 @@ This model detects topic drift in conversations using an enhanced attention-base
47
  ## Performance Metrics
48
  ```txt
49
  === Full Training Results ===
50
- Best Validation RMSE: 0.0107
51
- Best Validation R²: 0.8867
52
 
53
  === Test Set Results ===
54
  Loss: 0.0002
55
- RMSE: 0.0129
56
- R²: 0.8373
57
 
58
  ```
59
 
60
  ## Training Curves
61
- ![Training Curves](plots/v20241225_090654/training_curves.png)
62
 
63
  ## Usage
64
  ```python
@@ -70,7 +73,7 @@ base_model = AutoModel.from_pretrained('BAAI/bge-m3')
70
  tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
71
 
72
  # Load topic drift detector
73
- model = torch.load('models/v20241225_090654/topic_drift_model.pt')
74
  model.eval()
75
 
76
  # Prepare conversation window (8 turns)
 
19
  type: topic-drift-detection
20
  name: Topic Drift Detection
21
  dataset:
22
+ name: leonvanbokhorst/topic-drift-v2
23
  type: conversations
24
  metrics:
25
  - name: Test RMSE
26
  type: rmse
27
+ value: 0.0153
28
  - name: Test R²
29
  type: r2
30
+ value: 0.8500
31
+ - name: Test Loss
32
+ type: loss
33
+ value: 0.0002
34
  ---
35
 
36
  # Topic Drift Detector Model
37
 
38
+ ## Version: v20241225_160448
39
 
40
  This model detects topic drift in conversations using an enhanced attention-based architecture. Trained on the [leonvanbokhorst/topic-drift](https://huggingface.co/datasets/leonvanbokhorst/topic-drift) dataset.
41
 
 
50
  ## Performance Metrics
51
  ```txt
52
  === Full Training Results ===
53
+ Best Validation RMSE: 0.0145
54
+ Best Validation R²: 0.8656
55
 
56
  === Test Set Results ===
57
  Loss: 0.0002
58
+ RMSE: 0.0153
59
+ R²: 0.8500
60
 
61
  ```
62
 
63
  ## Training Curves
64
+ ![Training Curves](plots/v20241225_160448/training_curves.png)
65
 
66
  ## Usage
67
  ```python
 
73
  tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
74
 
75
  # Load topic drift detector
76
+ model = torch.load('models/v20241225_160448/topic_drift_model.pt')
77
  model.eval()
78
 
79
  # Prepare conversation window (8 turns)