leonvanbokhorst
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -19,20 +19,23 @@ model-index:
|
|
19 |
type: topic-drift-detection
|
20 |
name: Topic Drift Detection
|
21 |
dataset:
|
22 |
-
name: leonvanbokhorst/topic-drift
|
23 |
type: conversations
|
24 |
metrics:
|
25 |
- name: Test RMSE
|
26 |
type: rmse
|
27 |
-
value: 0.
|
28 |
- name: Test R²
|
29 |
type: r2
|
30 |
-
value: 0.
|
|
|
|
|
|
|
31 |
---
|
32 |
|
33 |
# Topic Drift Detector Model
|
34 |
|
35 |
-
## Version:
|
36 |
|
37 |
This model detects topic drift in conversations using an enhanced attention-based architecture. Trained on the [leonvanbokhorst/topic-drift](https://huggingface.co/datasets/leonvanbokhorst/topic-drift) dataset.
|
38 |
|
@@ -47,18 +50,18 @@ This model detects topic drift in conversations using an enhanced attention-base
|
|
47 |
## Performance Metrics
|
48 |
```txt
|
49 |
=== Full Training Results ===
|
50 |
-
Best Validation RMSE: 0.
|
51 |
-
Best Validation R²: 0.
|
52 |
|
53 |
=== Test Set Results ===
|
54 |
Loss: 0.0002
|
55 |
-
RMSE: 0.
|
56 |
-
R²: 0.
|
57 |
|
58 |
```
|
59 |
|
60 |
## Training Curves
|
61 |
-
![Training Curves](plots/
|
62 |
|
63 |
## Usage
|
64 |
```python
|
@@ -70,7 +73,7 @@ base_model = AutoModel.from_pretrained('BAAI/bge-m3')
|
|
70 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
|
71 |
|
72 |
# Load topic drift detector
|
73 |
-
model = torch.load('models/
|
74 |
model.eval()
|
75 |
|
76 |
# Prepare conversation window (8 turns)
|
|
|
19 |
type: topic-drift-detection
|
20 |
name: Topic Drift Detection
|
21 |
dataset:
|
22 |
+
name: leonvanbokhorst/topic-drift-v2
|
23 |
type: conversations
|
24 |
metrics:
|
25 |
- name: Test RMSE
|
26 |
type: rmse
|
27 |
+
value: 0.0153
|
28 |
- name: Test R²
|
29 |
type: r2
|
30 |
+
value: 0.8500
|
31 |
+
- name: Test Loss
|
32 |
+
type: loss
|
33 |
+
value: 0.0002
|
34 |
---
|
35 |
|
36 |
# Topic Drift Detector Model
|
37 |
|
38 |
+
## Version: v20241225_160448
|
39 |
|
40 |
This model detects topic drift in conversations using an enhanced attention-based architecture. Trained on the [leonvanbokhorst/topic-drift](https://huggingface.co/datasets/leonvanbokhorst/topic-drift) dataset.
|
41 |
|
|
|
50 |
## Performance Metrics
|
51 |
```txt
|
52 |
=== Full Training Results ===
|
53 |
+
Best Validation RMSE: 0.0145
|
54 |
+
Best Validation R²: 0.8656
|
55 |
|
56 |
=== Test Set Results ===
|
57 |
Loss: 0.0002
|
58 |
+
RMSE: 0.0153
|
59 |
+
R²: 0.8500
|
60 |
|
61 |
```
|
62 |
|
63 |
## Training Curves
|
64 |
+
![Training Curves](plots/v20241225_160448/training_curves.png)
|
65 |
|
66 |
## Usage
|
67 |
```python
|
|
|
73 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
|
74 |
|
75 |
# Load topic drift detector
|
76 |
+
model = torch.load('models/v20241225_160448/topic_drift_model.pt')
|
77 |
model.eval()
|
78 |
|
79 |
# Prepare conversation window (8 turns)
|