lewington commited on
Commit
e2575dd
·
1 Parent(s): 70fbe0e

remove example pt file

Browse files
Files changed (2) hide show
  1. 725159424.pt +0 -3
  2. README.md +31 -0
725159424.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eeb05bde43937f346fae4d7cf6152021187dc7dcaef6471506b255e0fd5ef647
3
- size 1610891985
 
 
 
 
README.md CHANGED
@@ -37,6 +37,37 @@ Training logs are available [via wandb](https://wandb.ai/lewington/ViT-L-14-laio
37
 
38
  ## Usage
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ## Error Formulae
41
 
42
  We calculate MSE as `(batch - reconstruction).pow(2).sum(dim=-1).mean()` i.e. The MSE between the batch and the un-normalized reconstruction, summed across features. We use batch norm to bring all activations into a similar range.
 
37
 
38
  ## Usage
39
 
40
+ ```python
41
+ import PIL
42
+ from clipscope import ConfiguredViT, TopKSAE
43
+
44
+ device='cpu'
45
+ filename_in_hf_repo = "725159424.pt"
46
+ sae = TopKSAE.from_pretrained(repo_id="lewington/CLIP-ViT-L-scope", filename=filename_in_hf_repo, device=device)
47
+
48
+ transformer_name='laion/CLIP-ViT-L-14-laion2B-s32B-b82K'
49
+ locations = [(22, 'resid')]
50
+ transformer = ConfiguredViT(locations, transformer_name, device=device)
51
+
52
+ input = PIL.Image.new("RGB", (224, 224), (0, 0, 0)) # black image for testing
53
+
54
+ activations = transformer.all_activations(input)[locations[0]] # (1, 257, 1024)
55
+ assert activations.shape == (1, 257, 1024)
56
+
57
+ activations = activations[:, 0] # just the cls token
58
+ # alternatively flatten the activations
59
+ # activations = activations.flatten(1)
60
+
61
+ print('activations shape', activations.shape)
62
+
63
+ output = sae.forward_verbose(activations)
64
+
65
+ print('output keys', output.keys())
66
+
67
+ print('latent shape', output['latent'].shape) # (1, 65536)
68
+ print('reconstruction shape', output['reconstruction'].shape) # (1, 1024)
69
+ ```
70
+
71
  ## Error Formulae
72
 
73
  We calculate MSE as `(batch - reconstruction).pow(2).sum(dim=-1).mean()` i.e. The MSE between the batch and the un-normalized reconstruction, summed across features. We use batch norm to bring all activations into a similar range.