--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: WITHINAPPS_NDD-petclinic_test-content-CWAdj results: [] --- # WITHINAPPS_NDD-petclinic_test-content-CWAdj This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | No log | 1.0 | 69 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 138 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 207 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 4.0 | 276 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 5.0 | 345 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1