update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- common_voice
|
6 |
+
model-index:
|
7 |
+
- name: wavlm-large-CORAA-pt-cv7
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# wavlm-large-CORAA-pt-cv7
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [lgris/WavLM-large-CORAA-pt](https://huggingface.co/lgris/WavLM-large-CORAA-pt) on the common_voice dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.2546
|
19 |
+
- Wer: 0.2261
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 100
|
47 |
+
- training_steps: 5000
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 0.6029 | 0.13 | 100 | 0.3679 | 0.3347 |
|
54 |
+
| 0.5297 | 0.26 | 200 | 0.3516 | 0.3227 |
|
55 |
+
| 0.5134 | 0.39 | 300 | 0.3327 | 0.3167 |
|
56 |
+
| 0.4941 | 0.52 | 400 | 0.3281 | 0.3122 |
|
57 |
+
| 0.4816 | 0.65 | 500 | 0.3154 | 0.3102 |
|
58 |
+
| 0.4649 | 0.78 | 600 | 0.3199 | 0.3058 |
|
59 |
+
| 0.461 | 0.91 | 700 | 0.3047 | 0.2974 |
|
60 |
+
| 0.4613 | 1.04 | 800 | 0.3006 | 0.2900 |
|
61 |
+
| 0.4198 | 1.17 | 900 | 0.2951 | 0.2891 |
|
62 |
+
| 0.3864 | 1.3 | 1000 | 0.2989 | 0.2862 |
|
63 |
+
| 0.3963 | 1.43 | 1100 | 0.2932 | 0.2830 |
|
64 |
+
| 0.3953 | 1.56 | 1200 | 0.2936 | 0.2829 |
|
65 |
+
| 0.3962 | 1.69 | 1300 | 0.2952 | 0.2773 |
|
66 |
+
| 0.3811 | 1.82 | 1400 | 0.2915 | 0.2748 |
|
67 |
+
| 0.3736 | 1.95 | 1500 | 0.2839 | 0.2684 |
|
68 |
+
| 0.3507 | 2.08 | 1600 | 0.2914 | 0.2678 |
|
69 |
+
| 0.3277 | 2.21 | 1700 | 0.2895 | 0.2652 |
|
70 |
+
| 0.3344 | 2.34 | 1800 | 0.2843 | 0.2673 |
|
71 |
+
| 0.335 | 2.47 | 1900 | 0.2821 | 0.2635 |
|
72 |
+
| 0.3559 | 2.6 | 2000 | 0.2830 | 0.2599 |
|
73 |
+
| 0.3254 | 2.73 | 2100 | 0.2711 | 0.2577 |
|
74 |
+
| 0.3263 | 2.86 | 2200 | 0.2685 | 0.2546 |
|
75 |
+
| 0.3266 | 2.99 | 2300 | 0.2679 | 0.2521 |
|
76 |
+
| 0.3066 | 3.12 | 2400 | 0.2727 | 0.2526 |
|
77 |
+
| 0.2998 | 3.25 | 2500 | 0.2648 | 0.2537 |
|
78 |
+
| 0.2961 | 3.38 | 2600 | 0.2630 | 0.2519 |
|
79 |
+
| 0.3046 | 3.51 | 2700 | 0.2684 | 0.2506 |
|
80 |
+
| 0.3006 | 3.64 | 2800 | 0.2604 | 0.2492 |
|
81 |
+
| 0.2992 | 3.77 | 2900 | 0.2682 | 0.2508 |
|
82 |
+
| 0.2775 | 3.9 | 3000 | 0.2732 | 0.2440 |
|
83 |
+
| 0.2903 | 4.03 | 3100 | 0.2659 | 0.2427 |
|
84 |
+
| 0.2535 | 4.16 | 3200 | 0.2650 | 0.2433 |
|
85 |
+
| 0.2714 | 4.29 | 3300 | 0.2588 | 0.2394 |
|
86 |
+
| 0.2636 | 4.42 | 3400 | 0.2652 | 0.2434 |
|
87 |
+
| 0.2647 | 4.55 | 3500 | 0.2624 | 0.2371 |
|
88 |
+
| 0.2796 | 4.67 | 3600 | 0.2611 | 0.2373 |
|
89 |
+
| 0.2644 | 4.8 | 3700 | 0.2604 | 0.2341 |
|
90 |
+
| 0.2657 | 4.93 | 3800 | 0.2567 | 0.2331 |
|
91 |
+
| 0.2423 | 5.06 | 3900 | 0.2594 | 0.2322 |
|
92 |
+
| 0.2556 | 5.19 | 4000 | 0.2587 | 0.2323 |
|
93 |
+
| 0.2327 | 5.32 | 4100 | 0.2639 | 0.2299 |
|
94 |
+
| 0.2613 | 5.45 | 4200 | 0.2569 | 0.2310 |
|
95 |
+
| 0.2382 | 5.58 | 4300 | 0.2585 | 0.2298 |
|
96 |
+
| 0.2404 | 5.71 | 4400 | 0.2543 | 0.2287 |
|
97 |
+
| 0.2368 | 5.84 | 4500 | 0.2553 | 0.2286 |
|
98 |
+
| 0.2514 | 5.97 | 4600 | 0.2517 | 0.2279 |
|
99 |
+
| 0.2415 | 6.1 | 4700 | 0.2524 | 0.2270 |
|
100 |
+
| 0.2338 | 6.23 | 4800 | 0.2540 | 0.2265 |
|
101 |
+
| 0.219 | 6.36 | 4900 | 0.2549 | 0.2263 |
|
102 |
+
| 0.2428 | 6.49 | 5000 | 0.2546 | 0.2261 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.16.1
|
108 |
+
- Pytorch 1.10.0+cu111
|
109 |
+
- Datasets 1.18.2
|
110 |
+
- Tokenizers 0.11.0
|