--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: LVI_bert-base-portuguese-cased results: [] --- # LVI_bert-base-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2393 - Accuracy: 0.9428 - F1: 0.9445 - Precision: 0.9182 - Recall: 0.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1736 | 1.0 | 3217 | 0.1532 | 0.9615 | 0.9618 | 0.955 | 0.9686 | | 0.1105 | 2.0 | 6434 | 0.1464 | 0.9629 | 0.9630 | 0.9582 | 0.9679 | | 0.0984 | 3.0 | 9651 | 0.2067 | 0.9525 | 0.9511 | 0.9786 | 0.9251 | | 0.0996 | 4.0 | 12868 | 0.1873 | 0.9608 | 0.9610 | 0.9569 | 0.9651 | | 0.17 | 5.0 | 16085 | 0.2393 | 0.9428 | 0.9445 | 0.9182 | 0.9723 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2