--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: LVI_bert-large-portuguese-cased results: [] --- # LVI_bert-large-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0755 - Accuracy: 0.9775 - F1: 0.9775 - Precision: 0.9758 - Recall: 0.9793 ## Run it ```sh import transformers model_name = "liaad/LVI_bert-large-portuguese-cased" pipe = transformers.pipeline(model=model_name) text = "Olá, como você está?" print(pipe(text)) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1071 | 1.0 | 3217 | 0.0755 | 0.9775 | 0.9775 | 0.9758 | 0.9793 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2