--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: harem-ner results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem config: default split: test args: default metrics: - name: Precision type: precision value: 0.6869415807560137 - name: Recall type: recall value: 0.7467314157639149 - name: F1 type: f1 value: 0.7155897619473779 - name: Accuracy type: accuracy value: 0.9527588964414234 --- # harem-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.2411 - Precision: 0.6869 - Recall: 0.7467 - F1: 0.7156 - Accuracy: 0.9528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 16 | 0.7683 | 0.0 | 0.0 | 0.0 | 0.8358 | | No log | 2.0 | 32 | 0.4727 | 0.3375 | 0.2955 | 0.3151 | 0.8803 | | No log | 3.0 | 48 | 0.3498 | 0.4859 | 0.4838 | 0.4848 | 0.9090 | | No log | 4.0 | 64 | 0.2771 | 0.5651 | 0.6223 | 0.5924 | 0.9354 | | No log | 5.0 | 80 | 0.2309 | 0.5901 | 0.6743 | 0.6294 | 0.9424 | | No log | 6.0 | 96 | 0.2195 | 0.6229 | 0.6997 | 0.6590 | 0.9469 | | No log | 7.0 | 112 | 0.2151 | 0.6239 | 0.6903 | 0.6554 | 0.9480 | | No log | 8.0 | 128 | 0.2178 | 0.6682 | 0.7236 | 0.6948 | 0.9504 | | No log | 9.0 | 144 | 0.2210 | 0.6808 | 0.7426 | 0.7104 | 0.9514 | | No log | 10.0 | 160 | 0.2292 | 0.6863 | 0.7348 | 0.7097 | 0.9512 | | No log | 11.0 | 176 | 0.2312 | 0.6932 | 0.7452 | 0.7183 | 0.9522 | | No log | 12.0 | 192 | 0.2258 | 0.6966 | 0.7523 | 0.7234 | 0.9535 | | No log | 13.0 | 208 | 0.2337 | 0.7076 | 0.7557 | 0.7309 | 0.9537 | | No log | 14.0 | 224 | 0.2299 | 0.6907 | 0.7549 | 0.7214 | 0.9533 | | No log | 15.0 | 240 | 0.2381 | 0.6980 | 0.7553 | 0.7255 | 0.9524 | | No log | 16.0 | 256 | 0.2411 | 0.6869 | 0.7467 | 0.7156 | 0.9528 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2