File size: 1,661 Bytes
44bec11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: liamvbetts/t5-small-finetuned-2024-03-30
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-2024-04-01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-2024-04-01

This model is a fine-tuned version of [liamvbetts/t5-small-finetuned-2024-03-30](https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-30) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6678
- Rouge1: 39.0836
- Rouge2: 26.3632
- Rougel: 35.7879
- Rougelsum: 35.8539
- Gen Len: 18.8471

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.507         | 1.0   | 340  | 1.6678          | 39.0836 | 26.3632 | 35.7879 | 35.8539   | 18.8471 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2