Audio-to-Audio
ESPnet
English
audio
File size: 6,496 Bytes
1c51ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea3935
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
tags:
- espnet
- audio
- audio-to-audio
language: en
datasets:
- wsj0_2mix
license: cc-by-4.0
---

## ESPnet2 ENH model 

### `lichenda/wsj0_2mix_skim_noncausal`

This model was trained by LiChenda using wsj0_2mix recipe in [espnet](https://github.com/espnet/espnet/).

### Demo: How to use in ESPnet2

```bash
cd espnet
git checkout ac3c10cfe4faf82c0bb30f8b32d9e8692363e0a9
pip install -e .
cd egs2/wsj0_2mix/enh1
./run.sh --skip_data_prep false --skip_train true --download_model lichenda/wsj0_2mix_skim_noncausal
```

<!-- Generated by ./scripts/utils/show_enh_score.sh -->
# RESULTS
## Environments
- date: `Wed Feb 23 16:42:06 CST 2022`
- python version: `3.7.11 (default, Jul 27 2021, 14:32:16)  [GCC 7.5.0]`
- espnet version: `espnet 0.10.7a1`
- pytorch version: `pytorch 1.8.1`
- Git hash: `ac3c10cfe4faf82c0bb30f8b32d9e8692363e0a9`
  - Commit date: `Fri Feb 11 16:22:52 2022 +0800`


## ..

config: conf/tuning/train_enh_skim_tasnet_noncausal.yaml

|dataset|STOI|SAR|SDR|SIR|
|---|---|---|---|---|
|enhanced_cv_min_8k|0.96|19.17|18.70|29.56|
|enhanced_tt_min_8k|0.97|18.96|18.45|29.31|

## ENH config

<details><summary>expand</summary>

```
config: conf/tuning/train_enh_skim_tasnet_noncausal.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: chunk
output_dir: exp/enh_train_enh_skim_tasnet_noncausal_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 150
patience: 20
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - si_snr
    - max
-   - valid
    - loss
    - min
keep_nbest_models: 1
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 8
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/enh_stats_8k/train/speech_mix_shape
- exp/enh_stats_8k/train/speech_ref1_shape
- exp/enh_stats_8k/train/speech_ref2_shape
valid_shape_file:
- exp/enh_stats_8k/valid/speech_mix_shape
- exp/enh_stats_8k/valid/speech_ref1_shape
- exp/enh_stats_8k/valid/speech_ref2_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 16000
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
-   - dump/raw/tr_min_8k/wav.scp
    - speech_mix
    - sound
-   - dump/raw/tr_min_8k/spk1.scp
    - speech_ref1
    - sound
-   - dump/raw/tr_min_8k/spk2.scp
    - speech_ref2
    - sound
valid_data_path_and_name_and_type:
-   - dump/raw/cv_min_8k/wav.scp
    - speech_mix
    - sound
-   - dump/raw/cv_min_8k/spk1.scp
    - speech_ref1
    - sound
-   - dump/raw/cv_min_8k/spk2.scp
    - speech_ref2
    - sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
    lr: 0.001
    eps: 1.0e-08
    weight_decay: 0
scheduler: reducelronplateau
scheduler_conf:
    mode: min
    factor: 0.7
    patience: 1
init: xavier_uniform
model_conf:
    stft_consistency: false
    loss_type: mask_mse
    mask_type: null
criterions:
-   name: si_snr
    conf:
        eps: 1.0e-07
    wrapper: pit
    wrapper_conf:
        weight: 1.0
        independent_perm: true
use_preprocessor: false
encoder: conv
encoder_conf:
    channel: 64
    kernel_size: 2
    stride: 1
separator: skim
separator_conf:
    causal: false
    num_spk: 2
    layer: 6
    nonlinear: relu
    unit: 128
    segment_size: 250
    dropout: 0.1
    mem_type: hc
    seg_overlap: true
decoder: conv
decoder_conf:
    channel: 64
    kernel_size: 2
    stride: 1
required:
- output_dir
version: 0.10.7a1
distributed: false
```

</details>



### Citing ESPnet

```BibTex
@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}


@inproceedings{ESPnet-SE,
  author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and 
  Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
  title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
  booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
  pages = {785--792},
  publisher = {{IEEE}},
  year = {2021},
  url = {https://doi.org/10.1109/SLT48900.2021.9383615},
  doi = {10.1109/SLT48900.2021.9383615},
  timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
  biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}


```

or arXiv:

```bibtex
@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit}, 
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```

Citing SkiM:
```bibtex
@article{li2022skim,
  title={SkiM: Skipping Memory LSTM for Low-Latency Real-Time Continuous Speech Separation},
  author={Li, Chenda and Yang, Lei and Wang, Weiqin and Qian, Yanmin},
  journal={arXiv preprint arXiv:2201.10800},
  year={2022}
}
```