DaViT-Florence-2-base-ft / modeling_davit.py
lieding1994's picture
Upload model
f83ff13 verified
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DaViT model."""
import math
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from collections import OrderedDict
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
# Ensure ConvEmbed, SpatialBlock, ChannelBlock, MySequential, etc., are defined before using them
from .configuration_davit import DaViTConfig
from transformers import AutoModel, AutoConfig
logger = logging.get_logger(__name__)
class LearnedAbsolutePositionEmbedding2D(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256, num_pos=50):
super().__init__()
self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
self.column_embeddings = nn.Embedding(
num_pos, embedding_dim - (embedding_dim // 2)
)
def forward(self, pixel_values):
"""
pixel_values: (batch_size, height, width, num_channels)
returns: (batch_size, height, width, embedding_dim * 2)
"""
if len(pixel_values.shape) != 4:
raise ValueError("pixel_values must be a 4D tensor")
height, width = pixel_values.shape[1:3]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
# (height, width, embedding_dim * 2)
pos = torch.cat(
[
x_emb.unsqueeze(0).repeat(height, 1, 1),
y_emb.unsqueeze(1).repeat(1, width, 1),
],
dim=-1,
)
# (embedding_dim * 2, height, width)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
# (batch_size, embedding_dim * 2, height, width)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
# (batch_size, height, width, embedding_dim * 2)
pos = pos.permute(0, 2, 3, 1)
return pos
class PositionalEmbeddingCosine1D(nn.Module):
"""
This class implements a very simple positional encoding. It follows closely
the encoder from the link below:
https://pytorch.org/tutorials/beginner/translation_transformer.html
Args:
embed_dim: The dimension of the embeddings.
dropout_prob: The dropout probability.
max_seq_len: The maximum length to precompute the positional encodings.
"""
def __init__(self, embed_dim: int = 512, max_seq_len: int = 1024) -> None:
super(PositionalEmbeddingCosine1D, self).__init__()
self.embed_dim = embed_dim
self.max_seq_len = max_seq_len
# Generate the sinusoidal arrays.
factor = math.log(10000)
denominator = torch.exp(
-factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim
)
# Matrix where rows correspond to a positional embedding as a function
# of the position index (i.e., the row index).
frequencies = (
torch.arange(0, self.max_seq_len).reshape(self.max_seq_len, 1) * denominator
)
pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
# Populate uneven entries.
pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
# Save the positional embeddings in a constant buffer.
self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
"""
Args:
seq_embeds: The sequence embeddings in order. Allowed size:
1. [T, D], where T is the length of the sequence, and D is the
frame embedding dimension.
2. [B, T, D], where B is the batch size and T and D are the
same as above.
Returns a tensor of with the same dimensions as the input: i.e.,
[1, T, D] or [T, D].
"""
shape_len = len(seq_embeds.shape)
assert 2 <= shape_len <= 3
len_seq = seq_embeds.size(-2)
assert len_seq <= self.max_seq_len
pos_embeds = self.pos_idx_to_embed[0 : seq_embeds.size(-2), :]
# Adapt pre-computed positional embeddings to the input.
if shape_len == 3:
pos_embeds = pos_embeds.view((1, pos_embeds.size(0), pos_embeds.size(1)))
return pos_embeds
class LearnedAbsolutePositionEmbedding1D(nn.Module):
"""
Learnable absolute positional embeddings for 1D sequences.
Args:
embed_dim: The dimension of the embeddings.
max_seq_len: The maximum length to precompute the positional encodings.
"""
def __init__(self, embedding_dim: int = 512, num_pos: int = 1024) -> None:
super(LearnedAbsolutePositionEmbedding1D, self).__init__()
self.embeddings = nn.Embedding(num_pos, embedding_dim)
self.num_pos = num_pos
def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
"""
Args:
seq_embeds: The sequence embeddings in order. Allowed size:
1. [T, D], where T is the length of the sequence, and D is the
frame embedding dimension.
2. [B, T, D], where B is the batch size and T and D are the
same as above.
Returns a tensor of with the same dimensions as the input: i.e.,
[1, T, D] or [T, D].
"""
shape_len = len(seq_embeds.shape)
assert 2 <= shape_len <= 3
len_seq = seq_embeds.size(-2)
assert len_seq <= self.num_pos
# [T, D]
pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
# Adapt pre-computed positional embeddings to the input.
if shape_len == 3:
pos_embeds = pos_embeds.view((1, pos_embeds.size(0), pos_embeds.size(1)))
return pos_embeds
class MySequential(nn.Sequential):
def forward(self, *inputs):
for module in self._modules.values():
if type(inputs) == tuple:
inputs = module(*inputs)
else:
inputs = module(inputs)
return inputs
class PreNorm(nn.Module):
def __init__(self, norm, fn, drop_path=None):
super().__init__()
self.norm = norm
self.fn = fn
self.drop_path = drop_path
def forward(self, x, *args, **kwargs):
shortcut = x
if self.norm != None:
x, size = self.fn(self.norm(x), *args, **kwargs)
else:
x, size = self.fn(x, *args, **kwargs)
if self.drop_path:
x = self.drop_path(x)
x = shortcut + x
return x, size
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.net = nn.Sequential(
OrderedDict(
[
("fc1", nn.Linear(in_features, hidden_features)),
("act", act_layer()),
("fc2", nn.Linear(hidden_features, out_features)),
]
)
)
def forward(self, x, size):
return self.net(x), size
class DepthWiseConv2d(nn.Module):
def __init__(
self,
dim_in,
kernel_size,
padding,
stride,
bias=True,
):
super().__init__()
self.dw = nn.Conv2d(
dim_in,
dim_in,
kernel_size=kernel_size,
padding=padding,
groups=dim_in,
stride=stride,
bias=bias,
)
def forward(self, x, size):
B, N, C = x.shape
H, W = size
assert N == H * W
x = self.dw(x.transpose(1, 2).view(B, C, H, W))
size = (x.size(-2), x.size(-1))
x = x.flatten(2).transpose(1, 2)
return x, size
class ConvEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
patch_size=7,
in_chans=3,
embed_dim=64,
stride=4,
padding=2,
norm_layer=None,
pre_norm=True,
):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding
)
dim_norm = in_chans if pre_norm else embed_dim
self.norm = norm_layer(dim_norm) if norm_layer else None
self.pre_norm = pre_norm
def forward(self, x, size):
H, W = size
if len(x.size()) == 3:
if self.norm and self.pre_norm:
x = self.norm(x)
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
x = self.proj(x)
_, _, H, W = x.shape
x = rearrange(x, "b c h w -> b (h w) c")
if self.norm and not self.pre_norm:
x = self.norm(x)
return x, (H, W)
class ChannelAttention(nn.Module):
def __init__(self, dim, groups=8, qkv_bias=True):
super().__init__()
self.groups = groups
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
def forward(self, x, size):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.groups, C // self.groups)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * (float(N) ** -0.5)
attention = q.transpose(-1, -2) @ k
attention = attention.softmax(dim=-1)
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x, size
class ChannelBlock(nn.Module):
def __init__(
self,
dim,
groups,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
conv_at_attn=True,
conv_at_ffn=True,
):
super().__init__()
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.conv1 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
)
self.channel_attn = PreNorm(
norm_layer(dim),
ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
drop_path,
)
self.conv2 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
)
self.ffn = PreNorm(
norm_layer(dim),
Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
),
drop_path,
)
def forward(self, x, size):
if self.conv1:
x, size = self.conv1(x, size)
x, size = self.channel_attn(x, size)
if self.conv2:
x, size = self.conv2(x, size)
x, size = self.ffn(x, size)
return x, size
def window_partition(x, window_size: int):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = (
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
)
return windows
def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
B = batch_size
# this will cause onnx conversion failed for dynamic axis, because treated as constant
# int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(
B, H // window_size, W // window_size, window_size, window_size, -1
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
def __init__(self, dim, num_heads, window_size, qkv_bias=True):
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = float(head_dim) ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, size):
H, W = size
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
x = window_partition(x, self.window_size)
x = x.view(-1, self.window_size * self.window_size, C)
# W-MSA/SW-MSA
# attn_windows = self.attn(x_windows)
B_, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
# merge windows
x = x.view(-1, self.window_size, self.window_size, C)
x = window_reverse(x, B, self.window_size, Hp, Wp)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
return x, size
class SpatialBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
window_size,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
conv_at_attn=True,
conv_at_ffn=True,
):
super().__init__()
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.conv1 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
)
self.window_attn = PreNorm(
norm_layer(dim),
WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
drop_path,
)
self.conv2 = (
PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
)
self.ffn = PreNorm(
norm_layer(dim),
Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
),
drop_path,
)
def forward(self, x, size):
if self.conv1:
x, size = self.conv1(x, size)
x, size = self.window_attn(x, size)
if self.conv2:
x, size = self.conv2(x, size)
x, size = self.ffn(x, size)
return x, size
# Define DaViT model class
class DaViTModel(PreTrainedModel):
config_class = DaViTConfig
def __init__(self, config: DaViTConfig):
super().__init__(config)
self.num_classes = 1000 # config.num_classes
self.embed_dims = config.embed_dims
self.num_heads = config.num_heads
self.num_groups = config.num_groups
self.num_stages = len(self.embed_dims)
self.enable_checkpoint = config.enable_checkpoint
assert self.num_stages == len(self.num_heads) == len(self.num_groups)
num_stages = len(config.embed_dims)
dpr = [
x.item()
for x in torch.linspace(0, config.drop_path_rate, sum(config.depths) * 2)
]
depth_offset = 0
convs = []
blocks = []
for i in range(num_stages):
conv_embed = ConvEmbed(
patch_size=config.patch_size[i],
stride=config.patch_stride[i],
padding=config.patch_padding[i],
in_chans=config.in_chans if i == 0 else self.embed_dims[i - 1],
embed_dim=self.embed_dims[i],
norm_layer=(
nn.LayerNorm
if config.norm_layer == "layer_norm"
else nn.BatchNorm2d
),
pre_norm=config.patch_prenorm[i],
)
convs.append(conv_embed)
block = MySequential(
*[
MySequential(
OrderedDict(
[
(
"spatial_block",
SpatialBlock(
self.embed_dims[i],
self.num_heads[i],
config.window_size,
drop_path_rate=dpr[depth_offset + j * 2],
qkv_bias=config.qkv_bias,
mlp_ratio=config.mlp_ratio,
conv_at_attn=config.conv_at_attn,
conv_at_ffn=config.conv_at_ffn,
),
),
(
"channel_block",
ChannelBlock(
self.embed_dims[i],
self.num_groups[i],
drop_path_rate=dpr[depth_offset + j * 2 + 1],
qkv_bias=config.qkv_bias,
mlp_ratio=config.mlp_ratio,
conv_at_attn=config.conv_at_attn,
conv_at_ffn=config.conv_at_ffn,
),
),
]
)
)
for j in range(config.depths[i])
]
)
blocks.append(block)
depth_offset += config.depths[i] * 2
self.convs = nn.ModuleList(convs)
self.blocks = nn.ModuleList(blocks)
self.norms = (
nn.LayerNorm(self.embed_dims[-1])
if config.norm_layer == "layer_norm"
else nn.BatchNorm2d(self.embed_dims[-1])
)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = (
nn.Linear(self.embed_dims[-1], self.num_classes)
if self.num_classes > 0
else nn.Identity()
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.02)
for name, _ in m.named_parameters():
if name in ["bias"]:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
def forward_features_unpool(self, x):
"""
forward until avg pooling
Args:
x (_type_): input image tensor
"""
input_size = (x.size(2), x.size(3))
for conv, block in zip(self.convs, self.blocks):
x, input_size = conv(x, input_size)
if self.enable_checkpoint:
x, input_size = checkpoint.checkpoint(block, x, input_size)
else:
x, input_size = block(x, input_size)
return x
def forward_features(self, x):
x = self.forward_features_unpool(x)
# (batch_size, num_tokens, token_dim)
x = self.avgpool(x.transpose(1, 2))
# (batch_size, 1, num_tokens)
x = torch.flatten(x, 1)
x = self.norms(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
# Register the configuration and model
AutoConfig.register("davit", DaViTConfig)
AutoModel.register(DaViTConfig, DaViTModel)