--- license: apache-2.0 base_model: distilbert-base-uncased tags: - general model-index: - name: liewchooichin/distilbert-base-uncased-tiny-imdb results: [] datasets: - stanfordnlp/imdb language: - en pipeline_tag: fill-mask --- # liewchooichin/distilbert-base-uncased-tiny-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9373 - Validation Loss: 2.9930 - Epoch: 2 ## Model description This model is created from following the lesson in Hugging Face Learn. NLP -- Main NLP Tasks -- [Fine-tuning a masked language model](https://huggingface.co/learn/nlp-course/chapter7/3?fw=tf#the-dataset). ## Intended uses & limitations This is only a small scale fine-tuning of the `standfordnlp/imbd` datasets. Only 1000 rows of the `unsupervised` dataset is used for training. The exercise is carried on Google Colab - T4 gpu. ## Training and evaluation data 1000 rows from the `standfordnlp/imbd` datasets. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2484 | 3.2338 | 0 | | 3.0821 | 2.8758 | 1 | | 2.9373 | 2.9930 | 2 | ### Framework versions - Transformers 4.40.2 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1