File size: 2,786 Bytes
698c992 9ec7ada 698c992 dc49658 9ec7ada 53ed339 9ec7ada 5bc718d 6a6e9e0 e1b5a68 6a6e9e0 dc49658 e1b5a68 dc49658 a017a74 ddaa1e9 f9eb073 ddaa1e9 a017a74 8e99233 a017a74 8e99233 a017a74 5bc718d a017a74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
datasets:
- graelo/wikipedia
- uonlp/CulturaX
- HuggingFaceH4/ultrachat_200k
language:
- ja
- en
---
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c8a2e01c25d2c581a381c1/9CbN4lDGU42c-7DmK_mGM.png" alt="drawing" width="600"/>
</p>
# Evaluation
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kICKvIbr6hpl0zT1-Y2Ut.png)
# How to use
### Hugggingface
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-7B")
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-7B", torch_dtype=torch.bfloat16, device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
```
### VLLM
```python
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/karasu-7B")
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
# Base checkpoint
augmxnt/shisa-7b-v1
* Mistral-7B base
* Pre-trained on 8B of MADLAD-Ja
* Finetuned on Japanese instructions
* Highest scoring 7B model on conversation benchmark (JA MT-Bench)
# Training datasets (total ~7B)
* Aozora Bunko
* Japanese Law Precedent Dataset
* Japanese Wikipedia
* .lg.jp, .go.jp, .ac.jp domain webscrapes from CulturaX (Any documents with same first 25 characters were de-duplicated)
* English Ultrachat200K-gen (So that it doesn't forget English and chatting ability learned in the base checkpoint)
# Developed by
<a href="https://www.lightblue-tech.com">
<img src="https://www.lightblue-tech.com/wp-content/uploads/2023/08/color_%E6%A8%AA%E5%9E%8B-1536x469.png" alt="Lightblue technology logo" width="400"/>
</a>
### Engineers
Peter Devine
Sho Higuchi
### Advisors
Yuuki Yamanaka
Atom Sonoda
### Project manager
Shunichi Taniguchi
### Dataset evaluator
Renju Aoki |