lighteternal's picture
Update README.md
d7a1738
---
language:
- en
- el
tags:
- translation
widget:
- text: "'Katerina', is the best name for a girl."
license: apache-2.0
metrics:
- bleu
---
## English to Greek NMT
## By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)
* source languages: en
* target languages: el
* licence: apache-2.0
* dataset: Opus, CCmatrix
* model: transformer(fairseq)
* pre-processing: tokenization + BPE segmentation
* metrics: bleu, chrf
### Model description
Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\\
BPE segmentation (20k codes).\\
Mixed-case model.
### How to use
```
from transformers import FSMTTokenizer, FSMTForConditionalGeneration
mname = "lighteternal/SSE-TUC-mt-en-el-cased"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
text = " 'Katerina', is the best name for a girl."
encoded = tokenizer.encode(text, return_tensors='pt')
outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
i += 1
print(f"{i}: {output.tolist()}")
decoded = tokenizer.decode(output, skip_special_tokens=True)
print(f"{i}: {decoded}")
```
## Training data
Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)
## Eval results
Results on Tatoeba testset (EN-EL):
| BLEU | chrF |
| ------ | ------ |
| 76.9 | 0.733 |
Results on XNLI parallel (EN-EL):
| BLEU | chrF |
| ------ | ------ |
| 65.4 | 0.624 |
### BibTeX entry and citation info
Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW
### Acknowledgement
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)