--- language: - en - el tags: - translation widget: - text: "Not all those who wander are lost." license: apache-2.0 metrics: - bleu --- ## English to Greek NMT (lower-case output) ## By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) * source languages: en * target languages: el * licence: apache-2.0 * dataset: Opus, CCmatrix * model: transformer(fairseq) * pre-processing: tokenization + lower-casing + BPE segmentation * metrics: bleu, chrf * output: lowercase only, for mixed-cased model use this: https://huggingface.co/lighteternal/SSE-TUC-mt-en-el-cased ### Model description Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\\ BPE segmentation (10k codes).\\ Lower-case model. ### How to use ``` from transformers import FSMTTokenizer, FSMTForConditionalGeneration mname = " " tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) text = "Not all those who wander are lost." encoded = tokenizer.encode(text, return_tensors='pt') outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True) for i, output in enumerate(outputs): i += 1 print(f"{i}: {output.tolist()}") decoded = tokenizer.decode(output, skip_special_tokens=True) print(f"{i}: {decoded}") ``` ## Training data Consolidated corpus from Opus and CC-Matrix (~6.6GB in total) ## Eval results Results on Tatoeba testset (EN-EL): | BLEU | chrF | | ------ | ------ | | 77.3 | 0.739 | Results on XNLI parallel (EN-EL): | BLEU | chrF | | ------ | ------ | | 66.1 | 0.606 | ### BibTeX entry and citation info Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW ### Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)