Added model without flair embeddings
Browse files- loss.tsv +2 -2
- pytorch_model.bin +2 -2
- training.log +313 -331
loss.tsv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
-
1
|
3 |
-
2
|
|
|
1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 14:24:53 0 0.0100 0.291245240352544 0.06397613137960434 0.9724 0.9736 0.973 0.9477
|
3 |
+
2 14:42:51 0 0.0100 0.13731835639464673 0.05747831612825394 0.9826 0.9863 0.9844 0.9696
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c623f10dba949ae162389713d32ce968220b060cfad3fdb180300495a7f35cc
|
3 |
+
size 714487533
|
training.log
CHANGED
@@ -1,408 +1,390 @@
|
|
1 |
-
2022-10-
|
2 |
-
2022-10-
|
3 |
-
(embeddings):
|
4 |
-
(
|
5 |
-
(
|
6 |
-
(
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
(
|
14 |
-
(
|
15 |
-
(
|
16 |
-
(
|
17 |
-
(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
22 |
-
)
|
23 |
-
(output): BertSelfOutput(
|
24 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
25 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
26 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
27 |
-
)
|
28 |
-
)
|
29 |
-
(intermediate): BertIntermediate(
|
30 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
31 |
-
(intermediate_act_fn): GELUActivation()
|
32 |
)
|
33 |
-
(output):
|
34 |
-
(dense): Linear(in_features=
|
35 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
36 |
(dropout): Dropout(p=0.1, inplace=False)
|
37 |
)
|
38 |
)
|
39 |
-
(
|
40 |
-
(
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
(
|
55 |
-
(
|
56 |
)
|
57 |
-
(output):
|
58 |
-
(dense): Linear(in_features=
|
59 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
60 |
(dropout): Dropout(p=0.1, inplace=False)
|
61 |
)
|
62 |
)
|
63 |
-
(
|
64 |
-
(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
(
|
79 |
-
(
|
80 |
)
|
81 |
-
(output):
|
82 |
-
(dense): Linear(in_features=
|
83 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
84 |
(dropout): Dropout(p=0.1, inplace=False)
|
85 |
)
|
86 |
)
|
87 |
-
(
|
88 |
-
(
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
(
|
103 |
-
(
|
104 |
)
|
105 |
-
(output):
|
106 |
-
(dense): Linear(in_features=
|
107 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
108 |
(dropout): Dropout(p=0.1, inplace=False)
|
109 |
)
|
110 |
)
|
111 |
-
(
|
112 |
-
(
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
(
|
127 |
-
(
|
128 |
)
|
129 |
-
(output):
|
130 |
-
(dense): Linear(in_features=
|
131 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
132 |
(dropout): Dropout(p=0.1, inplace=False)
|
133 |
)
|
134 |
)
|
135 |
-
(
|
136 |
-
(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
(
|
151 |
-
(
|
152 |
)
|
153 |
-
(output):
|
154 |
-
(dense): Linear(in_features=
|
155 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
156 |
(dropout): Dropout(p=0.1, inplace=False)
|
157 |
)
|
158 |
)
|
159 |
-
(
|
160 |
-
(
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
(
|
175 |
-
(
|
176 |
)
|
177 |
-
(output):
|
178 |
-
(dense): Linear(in_features=
|
179 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
180 |
(dropout): Dropout(p=0.1, inplace=False)
|
181 |
)
|
182 |
)
|
183 |
-
(
|
184 |
-
(
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
(
|
199 |
-
(
|
200 |
)
|
201 |
-
(output):
|
202 |
-
(dense): Linear(in_features=
|
203 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
204 |
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
)
|
206 |
)
|
207 |
-
(
|
208 |
-
(
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
(
|
223 |
-
(
|
224 |
)
|
225 |
-
(output):
|
226 |
-
(dense): Linear(in_features=
|
227 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
228 |
(dropout): Dropout(p=0.1, inplace=False)
|
229 |
)
|
230 |
)
|
231 |
-
(
|
232 |
-
(
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
(
|
247 |
-
(
|
248 |
)
|
249 |
-
(output):
|
250 |
-
(dense): Linear(in_features=
|
251 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
252 |
(dropout): Dropout(p=0.1, inplace=False)
|
253 |
)
|
254 |
)
|
255 |
-
(
|
256 |
-
(
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
(
|
271 |
-
(
|
272 |
)
|
273 |
-
(output):
|
274 |
-
(dense): Linear(in_features=
|
275 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
276 |
(dropout): Dropout(p=0.1, inplace=False)
|
277 |
)
|
278 |
)
|
279 |
-
(
|
280 |
-
(
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
(
|
295 |
-
(
|
296 |
)
|
297 |
-
(output):
|
298 |
-
(dense): Linear(in_features=
|
299 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
300 |
(dropout): Dropout(p=0.1, inplace=False)
|
301 |
)
|
302 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
)
|
304 |
)
|
305 |
-
(pooler): BertPooler(
|
306 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
307 |
-
(activation): Tanh()
|
308 |
-
)
|
309 |
-
)
|
310 |
-
)
|
311 |
-
(list_embedding_1): FlairEmbeddings(
|
312 |
-
(lm): LanguageModel(
|
313 |
-
(drop): Dropout(p=0.5, inplace=False)
|
314 |
-
(encoder): Embedding(275, 100)
|
315 |
-
(rnn): LSTM(100, 1024)
|
316 |
-
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
317 |
)
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
(drop): Dropout(p=0.5, inplace=False)
|
322 |
-
(encoder): Embedding(275, 100)
|
323 |
-
(rnn): LSTM(100, 1024)
|
324 |
-
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
325 |
)
|
326 |
)
|
327 |
)
|
|
|
328 |
(word_dropout): WordDropout(p=0.05)
|
329 |
(locked_dropout): LockedDropout(p=0.5)
|
330 |
-
(
|
331 |
-
(linear): Linear(in_features=2816, out_features=13, bias=True)
|
332 |
(loss_function): CrossEntropyLoss()
|
333 |
)"
|
334 |
-
2022-10-
|
335 |
-
2022-10-
|
336 |
-
2022-10-
|
337 |
-
2022-10-
|
338 |
-
2022-10-
|
339 |
-
2022-10-
|
340 |
-
2022-10-
|
341 |
-
2022-10-
|
342 |
-
2022-10-
|
343 |
-
2022-10-
|
344 |
-
2022-10-
|
345 |
-
2022-10-
|
346 |
-
2022-10-
|
347 |
-
2022-10-
|
348 |
-
2022-10-
|
349 |
-
2022-10-
|
350 |
-
2022-10-
|
351 |
-
2022-10-
|
352 |
-
2022-10-
|
353 |
-
2022-10-
|
354 |
-
2022-10-
|
355 |
-
2022-10-
|
356 |
-
2022-10-
|
357 |
-
2022-10-
|
358 |
-
2022-10-
|
359 |
-
2022-10-
|
360 |
-
2022-10-
|
361 |
-
2022-10-
|
362 |
-
2022-10-
|
363 |
-
2022-10-
|
364 |
-
2022-10-
|
365 |
-
2022-10-
|
366 |
-
2022-10-
|
367 |
-
2022-10-
|
368 |
-
2022-10-
|
369 |
-
2022-10-
|
370 |
-
2022-10-
|
371 |
-
2022-10-
|
372 |
-
2022-10-
|
373 |
-
2022-10-
|
374 |
-
2022-10-
|
375 |
-
2022-10-
|
376 |
-
2022-10-
|
377 |
-
2022-10-
|
378 |
-
2022-10-
|
379 |
-
2022-10-
|
380 |
-
2022-10-
|
381 |
-
2022-10-
|
382 |
-
2022-10-
|
383 |
-
2022-10-
|
384 |
-
2022-10-
|
385 |
-
2022-10-
|
386 |
-
2022-10-
|
387 |
-
2022-10-
|
388 |
-
2022-10-
|
389 |
-
2022-10-
|
390 |
-
2022-10-
|
391 |
-
2022-10-
|
392 |
Results:
|
393 |
-
- F-score (micro) 0.
|
394 |
-
- F-score (macro) 0.
|
395 |
-
- Accuracy 0.
|
396 |
|
397 |
By class:
|
398 |
precision recall f1-score support
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
color 0.
|
403 |
|
404 |
-
micro avg 0.
|
405 |
-
macro avg 0.
|
406 |
-
weighted avg 0.
|
407 |
|
408 |
-
2022-10-
|
|
|
1 |
+
2022-10-04 14:07:15,489 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-10-04 14:07:15,492 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(119547, 768, padding_idx=0)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
)
|
27 |
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
)
|
51 |
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
)
|
75 |
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
)
|
99 |
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
)
|
123 |
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
)
|
147 |
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
)
|
171 |
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
)
|
195 |
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
)
|
219 |
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
)
|
243 |
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
)
|
267 |
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
)
|
291 |
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
)
|
302 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
|
|
|
|
|
|
|
|
307 |
)
|
308 |
)
|
309 |
)
|
310 |
+
(dropout): Dropout(p=0.3, inplace=False)
|
311 |
(word_dropout): WordDropout(p=0.05)
|
312 |
(locked_dropout): LockedDropout(p=0.5)
|
313 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
|
|
314 |
(loss_function): CrossEntropyLoss()
|
315 |
)"
|
316 |
+
2022-10-04 14:07:15,510 ----------------------------------------------------------------------------------------------------
|
317 |
+
2022-10-04 14:07:15,510 Corpus: "Corpus: 70000 train + 15000 dev + 15000 test sentences"
|
318 |
+
2022-10-04 14:07:15,510 ----------------------------------------------------------------------------------------------------
|
319 |
+
2022-10-04 14:07:15,511 Parameters:
|
320 |
+
2022-10-04 14:07:15,511 - learning_rate: "0.010000"
|
321 |
+
2022-10-04 14:07:15,511 - mini_batch_size: "8"
|
322 |
+
2022-10-04 14:07:15,511 - patience: "3"
|
323 |
+
2022-10-04 14:07:15,512 - anneal_factor: "0.5"
|
324 |
+
2022-10-04 14:07:15,512 - max_epochs: "2"
|
325 |
+
2022-10-04 14:07:15,512 - shuffle: "True"
|
326 |
+
2022-10-04 14:07:15,512 - train_with_dev: "False"
|
327 |
+
2022-10-04 14:07:15,513 - batch_growth_annealing: "False"
|
328 |
+
2022-10-04 14:07:15,513 ----------------------------------------------------------------------------------------------------
|
329 |
+
2022-10-04 14:07:15,513 Model training base path: "c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\trans_sm_flair"
|
330 |
+
2022-10-04 14:07:15,513 ----------------------------------------------------------------------------------------------------
|
331 |
+
2022-10-04 14:07:15,513 Device: cuda:0
|
332 |
+
2022-10-04 14:07:15,514 ----------------------------------------------------------------------------------------------------
|
333 |
+
2022-10-04 14:07:15,514 Embeddings storage mode: cpu
|
334 |
+
2022-10-04 14:07:15,514 ----------------------------------------------------------------------------------------------------
|
335 |
+
2022-10-04 14:08:50,056 epoch 1 - iter 875/8750 - loss 0.77736243 - samples/sec: 74.10 - lr: 0.010000
|
336 |
+
2022-10-04 14:10:25,613 epoch 1 - iter 1750/8750 - loss 0.58654474 - samples/sec: 73.31 - lr: 0.010000
|
337 |
+
2022-10-04 14:12:00,221 epoch 1 - iter 2625/8750 - loss 0.49473747 - samples/sec: 74.05 - lr: 0.010000
|
338 |
+
2022-10-04 14:13:35,035 epoch 1 - iter 3500/8750 - loss 0.43711232 - samples/sec: 73.87 - lr: 0.010000
|
339 |
+
2022-10-04 14:15:08,344 epoch 1 - iter 4375/8750 - loss 0.39713865 - samples/sec: 75.06 - lr: 0.010000
|
340 |
+
2022-10-04 14:16:41,989 epoch 1 - iter 5250/8750 - loss 0.36731971 - samples/sec: 74.80 - lr: 0.010000
|
341 |
+
2022-10-04 14:18:17,847 epoch 1 - iter 6125/8750 - loss 0.34209381 - samples/sec: 73.07 - lr: 0.010000
|
342 |
+
2022-10-04 14:19:52,115 epoch 1 - iter 7000/8750 - loss 0.32256861 - samples/sec: 74.30 - lr: 0.010000
|
343 |
+
2022-10-04 14:21:26,066 epoch 1 - iter 7875/8750 - loss 0.30596431 - samples/sec: 74.55 - lr: 0.010000
|
344 |
+
2022-10-04 14:23:00,059 epoch 1 - iter 8750/8750 - loss 0.29124524 - samples/sec: 74.51 - lr: 0.010000
|
345 |
+
2022-10-04 14:23:00,061 ----------------------------------------------------------------------------------------------------
|
346 |
+
2022-10-04 14:23:00,062 EPOCH 1 done: loss 0.2912 - lr 0.010000
|
347 |
+
2022-10-04 14:24:52,210 Evaluating as a multi-label problem: False
|
348 |
+
2022-10-04 14:24:52,424 DEV : loss 0.06397613137960434 - f1-score (micro avg) 0.973
|
349 |
+
2022-10-04 14:24:53,223 BAD EPOCHS (no improvement): 0
|
350 |
+
2022-10-04 14:24:54,431 saving best model
|
351 |
+
2022-10-04 14:24:55,749 ----------------------------------------------------------------------------------------------------
|
352 |
+
2022-10-04 14:26:31,875 epoch 2 - iter 875/8750 - loss 0.15239591 - samples/sec: 72.88 - lr: 0.010000
|
353 |
+
2022-10-04 14:28:12,311 epoch 2 - iter 1750/8750 - loss 0.15109719 - samples/sec: 69.74 - lr: 0.010000
|
354 |
+
2022-10-04 14:29:49,414 epoch 2 - iter 2625/8750 - loss 0.15017726 - samples/sec: 72.14 - lr: 0.010000
|
355 |
+
2022-10-04 14:31:22,789 epoch 2 - iter 3500/8750 - loss 0.14709937 - samples/sec: 75.01 - lr: 0.010000
|
356 |
+
2022-10-04 14:32:56,365 epoch 2 - iter 4375/8750 - loss 0.14490590 - samples/sec: 74.87 - lr: 0.010000
|
357 |
+
2022-10-04 14:34:29,769 epoch 2 - iter 5250/8750 - loss 0.14379219 - samples/sec: 75.00 - lr: 0.010000
|
358 |
+
2022-10-04 14:36:04,122 epoch 2 - iter 6125/8750 - loss 0.14272196 - samples/sec: 74.24 - lr: 0.010000
|
359 |
+
2022-10-04 14:37:40,084 epoch 2 - iter 7000/8750 - loss 0.14024151 - samples/sec: 73.00 - lr: 0.010000
|
360 |
+
2022-10-04 14:39:15,077 epoch 2 - iter 7875/8750 - loss 0.13892120 - samples/sec: 73.73 - lr: 0.010000
|
361 |
+
2022-10-04 14:40:48,611 epoch 2 - iter 8750/8750 - loss 0.13731836 - samples/sec: 74.89 - lr: 0.010000
|
362 |
+
2022-10-04 14:40:48,617 ----------------------------------------------------------------------------------------------------
|
363 |
+
2022-10-04 14:40:48,617 EPOCH 2 done: loss 0.1373 - lr 0.010000
|
364 |
+
2022-10-04 14:42:50,048 Evaluating as a multi-label problem: False
|
365 |
+
2022-10-04 14:42:50,277 DEV : loss 0.05747831612825394 - f1-score (micro avg) 0.9844
|
366 |
+
2022-10-04 14:42:51,053 BAD EPOCHS (no improvement): 0
|
367 |
+
2022-10-04 14:42:52,333 saving best model
|
368 |
+
2022-10-04 14:42:54,576 ----------------------------------------------------------------------------------------------------
|
369 |
+
2022-10-04 14:42:54,600 loading file c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\trans_sm_flair\best-model.pt
|
370 |
+
2022-10-04 14:42:57,086 SequenceTagger predicts: Dictionary with 13 tags: O, S-size, B-size, E-size, I-size, S-brand, B-brand, E-brand, I-brand, S-color, B-color, E-color, I-color
|
371 |
+
2022-10-04 14:44:29,459 Evaluating as a multi-label problem: False
|
372 |
+
2022-10-04 14:44:29,668 0.9816 0.9857 0.9837 0.9679
|
373 |
+
2022-10-04 14:44:29,669
|
374 |
Results:
|
375 |
+
- F-score (micro) 0.9837
|
376 |
+
- F-score (macro) 0.9843
|
377 |
+
- Accuracy 0.9679
|
378 |
|
379 |
By class:
|
380 |
precision recall f1-score support
|
381 |
|
382 |
+
size 0.9820 0.9859 0.9839 17988
|
383 |
+
brand 0.9773 0.9860 0.9817 11674
|
384 |
+
color 0.9905 0.9840 0.9872 5070
|
385 |
|
386 |
+
micro avg 0.9816 0.9857 0.9837 34732
|
387 |
+
macro avg 0.9833 0.9853 0.9843 34732
|
388 |
+
weighted avg 0.9816 0.9857 0.9837 34732
|
389 |
|
390 |
+
2022-10-04 14:44:29,670 ----------------------------------------------------------------------------------------------------
|