DanielHesslow
commited on
Commit
·
5fe8b41
1
Parent(s):
5243f61
Update to follow HF naming scheme
Browse files- rita_modeling.py +21 -17
rita_modeling.py
CHANGED
@@ -129,8 +129,8 @@ class SelfAttention(nn.Module):
|
|
129 |
def forward(
|
130 |
self,
|
131 |
x,
|
132 |
-
|
133 |
-
|
134 |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
135 |
|
136 |
N, L, D = x.size() # Batch_size, Context_size, d_model
|
@@ -153,14 +153,14 @@ class SelfAttention(nn.Module):
|
|
153 |
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
|
154 |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
155 |
|
156 |
-
if
|
157 |
-
att[:,:,-L:, -L: ].masked_fill_(
|
158 |
|
159 |
att = (
|
160 |
att.transpose(0, 2)
|
161 |
-
.masked_fill(
|
162 |
.transpose(0, 2)
|
163 |
-
if
|
164 |
else att
|
165 |
)
|
166 |
|
@@ -197,11 +197,11 @@ class DecoderLayer(nn.Module):
|
|
197 |
def forward(
|
198 |
self,
|
199 |
x: torch.FloatTensor,
|
200 |
-
|
201 |
-
|
202 |
) -> torch.FloatTensor:
|
203 |
y = self.attn_norm(x)
|
204 |
-
y = self.self_attention(y,
|
205 |
x = x + self.attn_dropout(y)
|
206 |
|
207 |
y = self.mlp_norm(x)
|
@@ -228,27 +228,27 @@ class RITAModel(PreTrainedModel):
|
|
228 |
input_ids=None,
|
229 |
past_key_values=None, # NOT USED
|
230 |
attention_mask=None,
|
|
|
231 |
token_type_ids=None, # NOT USED
|
232 |
position_ids=None, # NOT USED
|
233 |
head_mask=None, # NOT USED
|
234 |
inputs_embeds=None,
|
235 |
encoder_hidden_states=None, # NOT USED
|
236 |
-
|
237 |
labels=None,
|
238 |
use_cache=None, # NOT USED
|
239 |
output_attentions=None, # NOT USED
|
240 |
output_hidden_states=None, # NOT USED
|
241 |
return_dict=None # NOT USED
|
242 |
) -> torch.FloatTensor:
|
243 |
-
|
244 |
if inputs_embeds == None:
|
245 |
x = self.embedding(input_ids) # N x L x D
|
246 |
else:
|
247 |
x = inputs_embeds
|
248 |
-
if
|
249 |
-
|
250 |
for layer in self.layers:
|
251 |
-
x = layer(x,
|
252 |
x = self.final_norm(x) # N x L x D
|
253 |
|
254 |
return BaseModelOutput(
|
@@ -295,23 +295,25 @@ class RITAModelForCausalLM(PreTrainedModel):
|
|
295 |
input_ids=None,
|
296 |
past_key_values=None, # NOT USED
|
297 |
attention_mask=None,
|
|
|
298 |
token_type_ids=None, # NOT USED
|
299 |
position_ids=None, # NOT USED
|
300 |
head_mask=None, # NOT USED
|
301 |
inputs_embeds=None,
|
302 |
encoder_hidden_states=None, # NOT USED
|
303 |
-
|
304 |
labels=None,
|
305 |
use_cache=None, # NOT USED
|
306 |
output_attentions=None, # NOT USED
|
307 |
output_hidden_states=None, # NOT USED
|
308 |
return_dict=None # NOT USED
|
309 |
) -> torch.FloatTensor:
|
310 |
-
|
311 |
transformer_outputs = self.transformer(
|
312 |
input_ids,
|
313 |
past_key_values=past_key_values,
|
314 |
-
|
|
|
315 |
token_type_ids=token_type_ids,
|
316 |
position_ids=position_ids,
|
317 |
head_mask=head_mask,
|
@@ -382,6 +384,7 @@ class RITAModelForSequenceClassification(PreTrainedModel):
|
|
382 |
input_ids=None,
|
383 |
past_key_values=None,
|
384 |
attention_mask=None,
|
|
|
385 |
token_type_ids=None,
|
386 |
position_ids=None,
|
387 |
head_mask=None,
|
@@ -404,6 +407,7 @@ class RITAModelForSequenceClassification(PreTrainedModel):
|
|
404 |
input_ids,
|
405 |
past_key_values=past_key_values,
|
406 |
attention_mask=attention_mask,
|
|
|
407 |
token_type_ids=token_type_ids,
|
408 |
position_ids=position_ids,
|
409 |
head_mask=head_mask,
|
|
|
129 |
def forward(
|
130 |
self,
|
131 |
x,
|
132 |
+
causal_mask: Optional[torch.BoolTensor] = None,
|
133 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
134 |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
135 |
|
136 |
N, L, D = x.size() # Batch_size, Context_size, d_model
|
|
|
153 |
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
|
154 |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
155 |
|
156 |
+
if causal_mask is not None:
|
157 |
+
att[:,:,-L:, -L: ].masked_fill_(causal_mask.view(1, 1, L, L), float("-inf"))
|
158 |
|
159 |
att = (
|
160 |
att.transpose(0, 2)
|
161 |
+
.masked_fill(attention_mask.view(1, 1, N, L)==0, float("-inf"))
|
162 |
.transpose(0, 2)
|
163 |
+
if attention_mask is not None
|
164 |
else att
|
165 |
)
|
166 |
|
|
|
197 |
def forward(
|
198 |
self,
|
199 |
x: torch.FloatTensor,
|
200 |
+
causal_mask: torch.BoolTensor,
|
201 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
202 |
) -> torch.FloatTensor:
|
203 |
y = self.attn_norm(x)
|
204 |
+
y = self.self_attention(y, causal_mask=causal_mask, attention_mask=attention_mask)
|
205 |
x = x + self.attn_dropout(y)
|
206 |
|
207 |
y = self.mlp_norm(x)
|
|
|
228 |
input_ids=None,
|
229 |
past_key_values=None, # NOT USED
|
230 |
attention_mask=None,
|
231 |
+
causal_mask=None,
|
232 |
token_type_ids=None, # NOT USED
|
233 |
position_ids=None, # NOT USED
|
234 |
head_mask=None, # NOT USED
|
235 |
inputs_embeds=None,
|
236 |
encoder_hidden_states=None, # NOT USED
|
237 |
+
encoder_causal_mask=None, # NOT USED
|
238 |
labels=None,
|
239 |
use_cache=None, # NOT USED
|
240 |
output_attentions=None, # NOT USED
|
241 |
output_hidden_states=None, # NOT USED
|
242 |
return_dict=None # NOT USED
|
243 |
) -> torch.FloatTensor:
|
|
|
244 |
if inputs_embeds == None:
|
245 |
x = self.embedding(input_ids) # N x L x D
|
246 |
else:
|
247 |
x = inputs_embeds
|
248 |
+
if causal_mask == None:
|
249 |
+
causal_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
|
250 |
for layer in self.layers:
|
251 |
+
x = layer(x, causal_mask=causal_mask, attention_mask=attention_mask)
|
252 |
x = self.final_norm(x) # N x L x D
|
253 |
|
254 |
return BaseModelOutput(
|
|
|
295 |
input_ids=None,
|
296 |
past_key_values=None, # NOT USED
|
297 |
attention_mask=None,
|
298 |
+
causal_mask=None,
|
299 |
token_type_ids=None, # NOT USED
|
300 |
position_ids=None, # NOT USED
|
301 |
head_mask=None, # NOT USED
|
302 |
inputs_embeds=None,
|
303 |
encoder_hidden_states=None, # NOT USED
|
304 |
+
encoder_causal_mask=None, # NOT USED
|
305 |
labels=None,
|
306 |
use_cache=None, # NOT USED
|
307 |
output_attentions=None, # NOT USED
|
308 |
output_hidden_states=None, # NOT USED
|
309 |
return_dict=None # NOT USED
|
310 |
) -> torch.FloatTensor:
|
311 |
+
|
312 |
transformer_outputs = self.transformer(
|
313 |
input_ids,
|
314 |
past_key_values=past_key_values,
|
315 |
+
causal_mask=causal_mask,
|
316 |
+
attention_mask = attention_mask,
|
317 |
token_type_ids=token_type_ids,
|
318 |
position_ids=position_ids,
|
319 |
head_mask=head_mask,
|
|
|
384 |
input_ids=None,
|
385 |
past_key_values=None,
|
386 |
attention_mask=None,
|
387 |
+
causal_mask=None,
|
388 |
token_type_ids=None,
|
389 |
position_ids=None,
|
390 |
head_mask=None,
|
|
|
407 |
input_ids,
|
408 |
past_key_values=past_key_values,
|
409 |
attention_mask=attention_mask,
|
410 |
+
causal_mask=causal_mask,
|
411 |
token_type_ids=token_type_ids,
|
412 |
position_ids=position_ids,
|
413 |
head_mask=head_mask,
|