DanielHesslow
commited on
Commit
·
ee739e3
1
Parent(s):
e283837
add model
Browse files- config.json +4 -13
- pytorch_model.bin +2 -2
- rita_configuration.py +5 -8
- rita_modeling.py +4 -5
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RITAModel"
|
5 |
],
|
@@ -8,24 +8,15 @@
|
|
8 |
"AutoModel": "rita_modeling.RITAModel",
|
9 |
"AutoModelForCausalLM": "rita_modeling.RITAModel"
|
10 |
},
|
11 |
-
"bos_token_id": [
|
12 |
-
[
|
13 |
-
[
|
14 |
-
[
|
15 |
-
50256
|
16 |
-
]
|
17 |
-
]
|
18 |
-
]
|
19 |
-
],
|
20 |
"d_feedforward": 3072,
|
21 |
"d_model": 768,
|
22 |
"dropout": 0.0,
|
23 |
-
"eos_token_id":
|
24 |
"max_seq_len": 1024,
|
25 |
-
"model_type": "
|
26 |
"num_heads": 12,
|
27 |
"num_layers": 12,
|
28 |
"torch_dtype": "float32",
|
29 |
"transformers_version": "4.18.0",
|
30 |
-
"vocab_size":
|
31 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "nz/RITA_s",
|
3 |
"architectures": [
|
4 |
"RITAModel"
|
5 |
],
|
|
|
8 |
"AutoModel": "rita_modeling.RITAModel",
|
9 |
"AutoModelForCausalLM": "rita_modeling.RITAModel"
|
10 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"d_feedforward": 3072,
|
12 |
"d_model": 768,
|
13 |
"dropout": 0.0,
|
14 |
+
"eos_token_id": 2,
|
15 |
"max_seq_len": 1024,
|
16 |
+
"model_type": "rita",
|
17 |
"num_heads": 12,
|
18 |
"num_layers": 12,
|
19 |
"torch_dtype": "float32",
|
20 |
"transformers_version": "4.18.0",
|
21 |
+
"vocab_size": 26
|
22 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc502eec97680f2dbefb38131ea4e2aa465bceb7f4bcdaaee0358726a21e361
|
3 |
+
size 340367779
|
rita_configuration.py
CHANGED
@@ -1,26 +1,24 @@
|
|
1 |
-
|
2 |
from transformers.configuration_utils import PretrainedConfig
|
3 |
from transformers.utils import logging
|
4 |
|
5 |
logger = logging.get_logger(__name__)
|
6 |
|
7 |
class RITAConfig(PretrainedConfig):
|
8 |
-
model_type = "
|
9 |
|
10 |
def __init__(
|
11 |
self,
|
12 |
-
vocab_size=
|
13 |
d_model=768,
|
14 |
num_layers=12,
|
15 |
max_seq_len=1024,
|
16 |
num_heads=12,
|
17 |
dropout=0.,
|
18 |
ff_ratio=4,
|
19 |
-
|
20 |
-
eos_token_id=50256, # TODO
|
21 |
**kwargs,
|
22 |
):
|
23 |
-
super().__init__(
|
24 |
self.vocab_size = vocab_size
|
25 |
self.d_model = d_model
|
26 |
self.num_heads = num_heads
|
@@ -28,5 +26,4 @@ class RITAConfig(PretrainedConfig):
|
|
28 |
self.num_layers = num_layers
|
29 |
self.max_seq_len=max_seq_len
|
30 |
self.dropout = dropout
|
31 |
-
self.
|
32 |
-
self.eos_token_id=eos_token_id
|
|
|
|
|
1 |
from transformers.configuration_utils import PretrainedConfig
|
2 |
from transformers.utils import logging
|
3 |
|
4 |
logger = logging.get_logger(__name__)
|
5 |
|
6 |
class RITAConfig(PretrainedConfig):
|
7 |
+
model_type = "rita"
|
8 |
|
9 |
def __init__(
|
10 |
self,
|
11 |
+
vocab_size=26,
|
12 |
d_model=768,
|
13 |
num_layers=12,
|
14 |
max_seq_len=1024,
|
15 |
num_heads=12,
|
16 |
dropout=0.,
|
17 |
ff_ratio=4,
|
18 |
+
eos_token_id=2,
|
|
|
19 |
**kwargs,
|
20 |
):
|
21 |
+
super().__init__(eos_token_id=eos_token_id, **kwargs)
|
22 |
self.vocab_size = vocab_size
|
23 |
self.d_model = d_model
|
24 |
self.num_heads = num_heads
|
|
|
26 |
self.num_layers = num_layers
|
27 |
self.max_seq_len=max_seq_len
|
28 |
self.dropout = dropout
|
29 |
+
self.eos_token_id=eos_token_id
|
|
rita_modeling.py
CHANGED
@@ -222,10 +222,10 @@ class RITAModel(PreTrainedModel):
|
|
222 |
self.final_norm = nn.LayerNorm(config.d_model)
|
223 |
self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)
|
224 |
|
225 |
-
def forward(self,
|
226 |
-
x = self.embedding(
|
227 |
if attn_mask == None:
|
228 |
-
attn_mask = (torch.triu(torch.ones(
|
229 |
for layer in self.layers:
|
230 |
x = layer(x, attn_mask=attn_mask, padding_mask=padding_mask)
|
231 |
x = self.final_norm(x) # N x L x D
|
@@ -246,5 +246,4 @@ class RITAModel(PreTrainedModel):
|
|
246 |
return self.projector
|
247 |
|
248 |
def set_output_embeddings(self, new_projector):
|
249 |
-
|
250 |
-
|
|
|
222 |
self.final_norm = nn.LayerNorm(config.d_model)
|
223 |
self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)
|
224 |
|
225 |
+
def forward(self, input_ids, attn_mask=None, padding_mask=None, return_hidden=False) -> torch.FloatTensor:
|
226 |
+
x = self.embedding(input_ids) # N x L x D
|
227 |
if attn_mask == None:
|
228 |
+
attn_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
|
229 |
for layer in self.layers:
|
230 |
x = layer(x, attn_mask=attn_mask, padding_mask=padding_mask)
|
231 |
x = self.final_norm(x) # N x L x D
|
|
|
246 |
return self.projector
|
247 |
|
248 |
def set_output_embeddings(self, new_projector):
|
249 |
+
self.projector = new_projector
|
|