lina-conti commited on
Commit
728c628
·
1 Parent(s): 69aa51e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: wav2vec2-base-timit-eng
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-base-timit-eng
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4391
20
+ - Wer: 0.3836
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
53
+ | 3.8306 | 1.0 | 500 | 2.9588 | 1.0 |
54
+ | 2.1928 | 2.01 | 1000 | 1.2215 | 0.9355 |
55
+ | 1.1547 | 3.01 | 1500 | 0.9228 | 0.7135 |
56
+ | 0.9487 | 4.02 | 2000 | 0.7682 | 0.6513 |
57
+ | 0.8163 | 5.02 | 2500 | 0.7154 | 0.6164 |
58
+ | 0.6642 | 6.02 | 3000 | 0.6160 | 0.5919 |
59
+ | 0.6291 | 7.03 | 3500 | 0.6224 | 0.5485 |
60
+ | 0.601 | 8.03 | 4000 | 0.5927 | 0.5371 |
61
+ | 0.5443 | 9.04 | 4500 | 0.5757 | 0.5240 |
62
+ | 0.4798 | 10.04 | 5000 | 0.5673 | 0.5074 |
63
+ | 0.5142 | 11.04 | 5500 | 0.6138 | 0.5131 |
64
+ | 0.4044 | 12.05 | 6000 | 0.5899 | 0.5120 |
65
+ | 0.4214 | 13.05 | 6500 | 0.5443 | 0.4932 |
66
+ | 0.377 | 14.06 | 7000 | 0.6055 | 0.5337 |
67
+ | 0.3985 | 15.06 | 7500 | 0.5055 | 0.4812 |
68
+ | 0.3609 | 16.06 | 8000 | 0.5764 | 0.4600 |
69
+ | 0.299 | 17.07 | 8500 | 0.5524 | 0.4635 |
70
+ | 0.2984 | 18.07 | 9000 | 0.5272 | 0.4435 |
71
+ | 0.2908 | 19.08 | 9500 | 0.5393 | 0.4446 |
72
+ | 0.2714 | 20.08 | 10000 | 0.4548 | 0.4463 |
73
+ | 0.2285 | 21.08 | 10500 | 0.5126 | 0.4309 |
74
+ | 0.2245 | 22.09 | 11000 | 0.4770 | 0.4309 |
75
+ | 0.229 | 23.09 | 11500 | 0.4763 | 0.4150 |
76
+ | 0.2032 | 24.1 | 12000 | 0.5009 | 0.4127 |
77
+ | 0.2125 | 25.1 | 12500 | 0.4698 | 0.4087 |
78
+ | 0.1955 | 26.1 | 13000 | 0.4592 | 0.4001 |
79
+ | 0.1841 | 27.11 | 13500 | 0.4517 | 0.3898 |
80
+ | 0.164 | 28.11 | 14000 | 0.4628 | 0.3927 |
81
+ | 0.1687 | 29.12 | 14500 | 0.4391 | 0.3836 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.25.1
87
+ - Pytorch 1.13.0+cu116
88
+ - Datasets 1.18.3
89
+ - Tokenizers 0.13.2