|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes.""" |
|
|
|
|
|
import collections |
|
import copy |
|
import os |
|
import unicodedata |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace |
|
from transformers.utils import is_sentencepiece_available, logging |
|
|
|
try: |
|
import sentencepiece as spm |
|
except ModuleNotFoundError as error: |
|
raise error.__class__( |
|
"The sentencepiece is not installed. " |
|
"See https://github.com/google/sentencepiece for installation." |
|
) |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"} |
|
|
|
SPIECE_UNDERLINE = "▁" |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt", |
|
"cl-tohoku/bert-base-japanese-whole-word-masking": ( |
|
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt" |
|
), |
|
"cl-tohoku/bert-base-japanese-char": ( |
|
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt" |
|
), |
|
"cl-tohoku/bert-base-japanese-char-whole-word-masking": ( |
|
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt" |
|
), |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"cl-tohoku/bert-base-japanese": 512, |
|
"cl-tohoku/bert-base-japanese-whole-word-masking": 512, |
|
"cl-tohoku/bert-base-japanese-char": 512, |
|
"cl-tohoku/bert-base-japanese-char-whole-word-masking": 512, |
|
} |
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"cl-tohoku/bert-base-japanese": { |
|
"do_lower_case": False, |
|
"word_tokenizer_type": "mecab", |
|
"subword_tokenizer_type": "wordpiece", |
|
}, |
|
"cl-tohoku/bert-base-japanese-whole-word-masking": { |
|
"do_lower_case": False, |
|
"word_tokenizer_type": "mecab", |
|
"subword_tokenizer_type": "wordpiece", |
|
}, |
|
"cl-tohoku/bert-base-japanese-char": { |
|
"do_lower_case": False, |
|
"word_tokenizer_type": "mecab", |
|
"subword_tokenizer_type": "character", |
|
}, |
|
"cl-tohoku/bert-base-japanese-char-whole-word-masking": { |
|
"do_lower_case": False, |
|
"word_tokenizer_type": "mecab", |
|
"subword_tokenizer_type": "character", |
|
}, |
|
} |
|
|
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip("\n") |
|
vocab[token] = index |
|
return vocab |
|
|
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
|
|
class DistilBertJapaneseTokenizer(PreTrainedTokenizer): |
|
r""" |
|
Construct a BERT tokenizer for Japanese text. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer |
|
to: this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to a one-wordpiece-per-line vocabulary file. |
|
spm_file (`str`, *optional*): |
|
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model |
|
extension) that contains the vocabulary. |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether to lower case the input. Only has an effect when do_basic_tokenize=True. |
|
do_word_tokenize (`bool`, *optional*, defaults to `True`): |
|
Whether to do word tokenization. |
|
do_subword_tokenize (`bool`, *optional*, defaults to `True`): |
|
Whether to do subword tokenization. |
|
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`): |
|
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"]. |
|
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`): |
|
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",]. |
|
mecab_kwargs (`dict`, *optional*): |
|
Dictionary passed to the `MecabTokenizer` constructor. |
|
sudachi_kwargs (`dict`, *optional*): |
|
Dictionary passed to the `SudachiTokenizer` constructor. |
|
jumanpp_kwargs (`dict`, *optional*): |
|
Dictionary passed to the `JumanppTokenizer` constructor. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = [ "input_ids" , "attention_mask" ] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
spm_file=None, |
|
do_lower_case=False, |
|
do_word_tokenize=True, |
|
do_subword_tokenize=True, |
|
word_tokenizer_type="basic", |
|
subword_tokenizer_type="wordpiece", |
|
never_split=None, |
|
unk_token="[UNK]", |
|
sep_token="[SEP]", |
|
pad_token="[PAD]", |
|
cls_token="[CLS]", |
|
mask_token="[MASK]", |
|
mecab_kwargs=None, |
|
sudachi_kwargs=None, |
|
jumanpp_kwargs=None, |
|
**kwargs |
|
): |
|
super().__init__( |
|
spm_file=spm_file, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
mask_token=mask_token, |
|
do_lower_case=do_lower_case, |
|
do_word_tokenize=do_word_tokenize, |
|
do_subword_tokenize=do_subword_tokenize, |
|
word_tokenizer_type=word_tokenizer_type, |
|
subword_tokenizer_type=subword_tokenizer_type, |
|
never_split=never_split, |
|
mecab_kwargs=mecab_kwargs, |
|
sudachi_kwargs=sudachi_kwargs, |
|
jumanpp_kwargs=jumanpp_kwargs, |
|
**kwargs, |
|
) |
|
|
|
if subword_tokenizer_type == "sentencepiece": |
|
if not os.path.isfile(spm_file): |
|
raise ValueError( |
|
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google" |
|
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" |
|
) |
|
self.spm_file = spm_file |
|
else: |
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google" |
|
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" |
|
) |
|
self.vocab = load_vocab(vocab_file) |
|
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) |
|
|
|
self.do_word_tokenize = do_word_tokenize |
|
self.word_tokenizer_type = word_tokenizer_type |
|
self.lower_case = do_lower_case |
|
self.never_split = never_split |
|
self.mecab_kwargs = copy.deepcopy(mecab_kwargs) |
|
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs) |
|
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs) |
|
if do_word_tokenize: |
|
if word_tokenizer_type == "basic": |
|
self.word_tokenizer = BasicTokenizer( |
|
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False |
|
) |
|
elif word_tokenizer_type == "mecab": |
|
self.word_tokenizer = MecabTokenizer( |
|
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {}) |
|
) |
|
elif word_tokenizer_type == "sudachi": |
|
self.word_tokenizer = SudachiTokenizer( |
|
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {}) |
|
) |
|
elif word_tokenizer_type == "jumanpp": |
|
self.word_tokenizer = JumanppTokenizer( |
|
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {}) |
|
) |
|
else: |
|
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.") |
|
|
|
self.do_subword_tokenize = do_subword_tokenize |
|
self.subword_tokenizer_type = subword_tokenizer_type |
|
if do_subword_tokenize: |
|
if subword_tokenizer_type == "wordpiece": |
|
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) |
|
elif subword_tokenizer_type == "character": |
|
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token) |
|
elif subword_tokenizer_type == "sentencepiece": |
|
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token) |
|
else: |
|
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.") |
|
|
|
@property |
|
def do_lower_case(self): |
|
return self.lower_case |
|
|
|
def __getstate__(self): |
|
state = dict(self.__dict__) |
|
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]: |
|
del state["word_tokenizer"] |
|
return state |
|
|
|
def __setstate__(self, state): |
|
self.__dict__ = state |
|
if self.word_tokenizer_type == "mecab": |
|
self.word_tokenizer = MecabTokenizer( |
|
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {}) |
|
) |
|
elif self.word_tokenizer_type == "sudachi": |
|
self.word_tokenizer = SudachiTokenizer( |
|
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {}) |
|
) |
|
elif self.word_tokenizer_type == "jumanpp": |
|
self.word_tokenizer = JumanppTokenizer( |
|
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {}) |
|
) |
|
|
|
def _tokenize(self, text): |
|
if self.do_word_tokenize: |
|
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens) |
|
else: |
|
tokens = [text] |
|
|
|
if self.do_subword_tokenize: |
|
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)] |
|
else: |
|
split_tokens = tokens |
|
|
|
return split_tokens |
|
|
|
@property |
|
def vocab_size(self): |
|
if self.subword_tokenizer_type == "sentencepiece": |
|
return len(self.subword_tokenizer.sp_model) |
|
return len(self.vocab) |
|
|
|
def get_vocab(self): |
|
if self.subword_tokenizer_type == "sentencepiece": |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
return dict(self.vocab, **self.added_tokens_encoder) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
if self.subword_tokenizer_type == "sentencepiece": |
|
return self.subword_tokenizer.sp_model.PieceToId(token) |
|
return self.vocab.get(token, self.vocab.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
if self.subword_tokenizer_type == "sentencepiece": |
|
return self.subword_tokenizer.sp_model.IdToPiece(index) |
|
return self.ids_to_tokens.get(index, self.unk_token) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
if self.subword_tokenizer_type == "sentencepiece": |
|
return self.subword_tokenizer.sp_model.decode(tokens) |
|
out_string = " ".join(tokens).replace(" ##", "").strip() |
|
return out_string |
|
|
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
|
|
- single sequence: `[CLS] X [SEP]` |
|
- pair of sequences: `[CLS] A [SEP] B [SEP]` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + token_ids_1 + sep |
|
|
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if token_ids_1 is not None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
|
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence |
|
pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if os.path.isdir(save_directory): |
|
if self.subword_tokenizer_type == "sentencepiece": |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"] |
|
) |
|
else: |
|
vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"], |
|
) |
|
else: |
|
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory |
|
|
|
if self.subword_tokenizer_type == "sentencepiece": |
|
with open(vocab_file, "wb") as writer: |
|
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto() |
|
writer.write(content_spiece_model) |
|
else: |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
index = 0 |
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|
|
|
|
class MecabTokenizer: |
|
"""Runs basic tokenization with MeCab morphological parser.""" |
|
|
|
def __init__( |
|
self, |
|
do_lower_case=False, |
|
never_split=None, |
|
normalize_text=True, |
|
mecab_dic: Optional[str] = "unidic_lite", |
|
mecab_option: Optional[str] = None, |
|
): |
|
""" |
|
Constructs a MecabTokenizer. |
|
|
|
Args: |
|
**do_lower_case**: (*optional*) boolean (default True) |
|
Whether to lowercase the input. |
|
**never_split**: (*optional*) list of str |
|
Kept for backward compatibility purposes. Now implemented directly at the base class level (see |
|
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split. |
|
**normalize_text**: (*optional*) boolean (default True) |
|
Whether to apply unicode normalization to text before tokenization. |
|
**mecab_dic**: (*optional*) string (default "unidic_lite") |
|
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary, |
|
set this option to `None` and modify *mecab_option*. |
|
**mecab_option**: (*optional*) string |
|
String passed to MeCab constructor. |
|
""" |
|
self.do_lower_case = do_lower_case |
|
self.never_split = never_split if never_split is not None else [] |
|
self.normalize_text = normalize_text |
|
|
|
try: |
|
import fugashi |
|
except ModuleNotFoundError as error: |
|
raise error.__class__( |
|
"You need to install fugashi to use MecabTokenizer. " |
|
"See https://pypi.org/project/fugashi/ for installation." |
|
) |
|
|
|
mecab_option = mecab_option or "" |
|
|
|
if mecab_dic is not None: |
|
if mecab_dic == "unidic_lite": |
|
try: |
|
import unidic_lite |
|
except ModuleNotFoundError as error: |
|
raise error.__class__( |
|
"The unidic_lite dictionary is not installed. " |
|
"See https://github.com/polm/unidic-lite for installation." |
|
) |
|
|
|
dic_dir = unidic_lite.DICDIR |
|
elif mecab_dic == "unidic": |
|
try: |
|
import unidic |
|
except ModuleNotFoundError as error: |
|
raise error.__class__( |
|
"The unidic dictionary is not installed. " |
|
"See https://github.com/polm/unidic-py for installation." |
|
) |
|
|
|
dic_dir = unidic.DICDIR |
|
if not os.path.isdir(dic_dir): |
|
raise RuntimeError( |
|
"The unidic dictionary itself is not found. " |
|
"See https://github.com/polm/unidic-py for installation." |
|
) |
|
|
|
else: |
|
raise ValueError("Invalid mecab_dic is specified.") |
|
|
|
mecabrc = os.path.join(dic_dir, "mecabrc") |
|
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option |
|
|
|
self.mecab = fugashi.GenericTagger(mecab_option) |
|
|
|
def tokenize(self, text, never_split=None, **kwargs): |
|
"""Tokenizes a piece of text.""" |
|
if self.normalize_text: |
|
text = unicodedata.normalize("NFKC", text) |
|
|
|
never_split = self.never_split + (never_split if never_split is not None else []) |
|
tokens = [] |
|
|
|
for word in self.mecab(text): |
|
token = word.surface |
|
|
|
if self.do_lower_case and token not in never_split: |
|
token = token.lower() |
|
|
|
tokens.append(token) |
|
|
|
return tokens |
|
|
|
|
|
class CharacterTokenizer: |
|
"""Runs Character tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token, normalize_text=True): |
|
""" |
|
Constructs a CharacterTokenizer. |
|
|
|
Args: |
|
**vocab**: |
|
Vocabulary object. |
|
**unk_token**: str |
|
A special symbol for out-of-vocabulary token. |
|
**normalize_text**: (`optional`) boolean (default True) |
|
Whether to apply unicode normalization to text before tokenization. |
|
""" |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.normalize_text = normalize_text |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes a piece of text into characters. |
|
|
|
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`. |
|
|
|
Args: |
|
text: A single token or whitespace separated tokens. |
|
This should have already been passed through *BasicTokenizer*. |
|
|
|
Returns: |
|
A list of characters. |
|
""" |
|
if self.normalize_text: |
|
text = unicodedata.normalize("NFKC", text) |
|
|
|
output_tokens = [] |
|
for char in text: |
|
if char not in self.vocab: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
output_tokens.append(char) |
|
|
|
return output_tokens |
|
|
|
|
|
|
|
class BasicTokenizer(object): |
|
""" |
|
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). |
|
|
|
Args: |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
never_split (`Iterable`, *optional*): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
`do_basic_tokenize=True` |
|
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): |
|
Whether or not to tokenize Chinese characters. |
|
|
|
This should likely be deactivated for Japanese (see this |
|
[issue](https://github.com/huggingface/transformers/issues/328)). |
|
strip_accents (`bool`, *optional*): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for `lowercase` (as in the original BERT). |
|
""" |
|
|
|
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): |
|
if never_split is None: |
|
never_split = [] |
|
self.do_lower_case = do_lower_case |
|
self.never_split = set(never_split) |
|
self.tokenize_chinese_chars = tokenize_chinese_chars |
|
self.strip_accents = strip_accents |
|
|
|
def tokenize(self, text, never_split=None): |
|
""" |
|
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see |
|
WordPieceTokenizer. |
|
|
|
Args: |
|
never_split (`List[str]`, *optional*) |
|
Kept for backward compatibility purposes. Now implemented directly at the base class level (see |
|
[`PreTrainedTokenizer.tokenize`]) List of token not to split. |
|
""" |
|
|
|
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.tokenize_chinese_chars: |
|
text = self._tokenize_chinese_chars(text) |
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if token not in never_split: |
|
if self.do_lower_case: |
|
token = token.lower() |
|
if self.strip_accents is not False: |
|
token = self._run_strip_accents(token) |
|
elif self.strip_accents: |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token, never_split)) |
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text, never_split=None): |
|
"""Splits punctuation on a piece of text.""" |
|
if never_split is not None and text in never_split: |
|
return [text] |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
(cp >= 0x4E00 and cp <= 0x9FFF) |
|
or (cp >= 0x3400 and cp <= 0x4DBF) |
|
or (cp >= 0x20000 and cp <= 0x2A6DF) |
|
or (cp >= 0x2A700 and cp <= 0x2B73F) |
|
or (cp >= 0x2B740 and cp <= 0x2B81F) |
|
or (cp >= 0x2B820 and cp <= 0x2CEAF) |
|
or (cp >= 0xF900 and cp <= 0xFAFF) |
|
or (cp >= 0x2F800 and cp <= 0x2FA1F) |
|
): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xFFFD or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform |
|
tokenization using the given vocabulary. |
|
|
|
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. |
|
|
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through *BasicTokenizer*. |
|
|
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|
|
|
|
class SentencepieceTokenizer(object): |
|
""" |
|
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vocab, |
|
unk_token, |
|
do_lower_case=False, |
|
remove_space=True, |
|
keep_accents=True, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.do_lower_case = do_lower_case |
|
self.remove_space = remove_space |
|
self.keep_accents = keep_accents |
|
|
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.Load(self.vocab) |
|
|
|
def preprocess_text(self, inputs): |
|
if self.remove_space: |
|
outputs = " ".join(inputs.strip().split()) |
|
else: |
|
outputs = inputs |
|
outputs = outputs.replace("``", '"').replace("''", '"') |
|
|
|
if not self.keep_accents: |
|
outputs = unicodedata.normalize("NFKD", outputs) |
|
outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) |
|
if self.do_lower_case: |
|
outputs = outputs.lower() |
|
|
|
return outputs |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece). |
|
Tokenization needs the given vocabulary. |
|
|
|
Args: |
|
text: A string needs to be tokenized. |
|
|
|
Returns: |
|
A list of sentencepiece tokens. |
|
""" |
|
text = self.preprocess_text(text) |
|
pieces = self.sp_model.encode(text, out_type=str) |
|
new_pieces = [] |
|
for piece in pieces: |
|
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): |
|
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) |
|
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: |
|
if len(cur_pieces[0]) == 1: |
|
cur_pieces = cur_pieces[1:] |
|
else: |
|
cur_pieces[0] = cur_pieces[0][1:] |
|
cur_pieces.append(piece[-1]) |
|
new_pieces.extend(cur_pieces) |
|
else: |
|
new_pieces.append(piece) |
|
|
|
return new_pieces |